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SPSS	is	a	widely	used	program	forstatistical	analysisinsocial	science.	It	is	also	used	by	market	researchers,	health	researchers,	survey	companies,	government,	education	researchers,	marketing	organizations,	data	minersand	others.	IBM	SPSS	is	available	for	free	on	all	Classroom	PCs.	It	can	be	found	in	the	"Common	Applications	Folder"	under
"Statistical	Software".	All	University	staff	and	students	can	install	SPSS	on	a	personal	computer	through	the	Software	Download	Service	which	can	be	accessed	in	theLinks	section	of	this	resource.	You	can	download	the	software,	installation	instructions	and	license	codes	for	PC,	Mac	or	Linux.	Tutorials,	the	IBM	Knowledge	Center	and	other
information	can	also	be	found	in	the	Links	section.	Related	resources	|	MATLAB	|	NVivo	|	MS	Excel	|	Information	Governance	Last	updated	on	22	October	2024	[{"Business	Unit":{"code":"BU048","label":"IBM	Software"},"Product":{"code":"SSLVMB","label":"IBM	SPSS	Statistics"},"Component":"SPSS	Statistics	Subscription","Platform":
[{"code":"PF017","label":"Mac	OS"},{"code":"PF033","label":"Windows"}],"Version":"All	Versions","Edition":"","Line	of	Business":{"code":"LOB76","label":"Data	Platform"}},{"Business	Unit":{"code":"BU048","label":"IBM	Software"},"Product":{"code":"SS3RA7","label":"IBM	SPSS	Modeler"},"Component":"SPSS	Modeler	Subscription;Watson	Studio
Desktop","Platform":[{"code":"PF017","label":"Mac	OS"},{"code":"PF033","label":"Windows"}],"Version":"All	Versions","Edition":"","Line	of	Business":{"code":"LOB76","label":"Data	Platform"}}]	Process	of	using	data	analysisNot	to	be	confused	with	Statistical	interference.Part	of	a	series	onResearchResearch
designEthicsProposalQuestionWritingArgumentReferencingResearch	strategyInterdisciplinaryMultimethodologyQualitativeArt-basedQuantitativePhilosophical	schoolsAntipositivism	ConstructivismCritical	rationalismEmpiricismFallibilismPositivismPostpositivismPragmatismRealismCritical	realismSubtle	realismMethodologyAction	researchArt
methodologyCritical	theoryGrounded	theoryHermeneuticsHistoriographyHuman	subject	researchNarrative	inquiryPhenomenologyPragmatismScientific	methodMethodsAnalysisCase	studyContent	analysisDescriptive	statisticsDiscourse	analysisEthnographyAutoethnographyExperimentField	experimentSocial	experimentQuasi-experimentField
researchHistorical	methodInferential	statisticsInterviewsMappingCultural	mappingPhenomenographySecondary	researchBibliometricsLiterature	reviewMeta-analysisScoping	reviewSystematic	reviewScientific	modellingSimulationSurveyTools	and	softwareArgument	technologyGIS	softwareLIS	softwareBibliometricsReference	managementScience
softwareQualitative	data	analysisSimulationStatisticsPhilosophy	portalvteStatistical	inference	is	the	process	of	using	data	analysis	to	infer	properties	of	an	underlying	probability	distribution.[1]	Inferential	statistical	analysis	infers	properties	of	a	population,	for	example	by	testing	hypotheses	and	deriving	estimates.	It	is	assumed	that	the	observed
data	set	is	sampled	from	a	larger	population.Inferential	statistics	can	be	contrasted	with	descriptive	statistics.	Descriptive	statistics	is	solely	concerned	with	properties	of	the	observed	data,	and	it	does	not	rest	on	the	assumption	that	the	data	come	from	a	larger	population.	In	machine	learning,	the	term	inference	is	sometimes	used	instead	to	mean
"make	a	prediction,	by	evaluating	an	already	trained	model";[2]	in	this	context	inferring	properties	of	the	model	is	referred	to	as	training	or	learning	(rather	than	inference),	and	using	a	model	for	prediction	is	referred	to	as	inference	(instead	of	prediction);	see	also	predictive	inference.Statistical	inference	makes	propositions	about	a	population,	using
data	drawn	from	the	population	with	some	form	of	sampling.	Given	a	hypothesis	about	a	population,	for	which	we	wish	to	draw	inferences,	statistical	inference	consists	of	(first)	selecting	a	statistical	model	of	the	process	that	generates	the	data	and	(second)	deducing	propositions	from	the	model.[3]Konishi	and	Kitagawa	state	"The	majority	of	the
problems	in	statistical	inference	can	be	considered	to	be	problems	related	to	statistical	modeling".[4]	Relatedly,	Sir	David	Cox	has	said,	"How	[the]	translation	from	subject-matter	problem	to	statistical	model	is	done	is	often	the	most	critical	part	of	an	analysis".[5]The	conclusion	of	a	statistical	inference	is	a	statistical	proposition.[6]	Some	common
forms	of	statistical	proposition	are	the	following:a	point	estimate,	i.e.	a	particular	value	that	best	approximates	some	parameter	of	interest;an	interval	estimate,	e.g.	a	confidence	interval	(or	set	estimate),	i.e.	an	interval	constructed	using	a	dataset	drawn	from	a	population	so	that,	under	repeated	sampling	of	such	datasets,	such	intervals	would	contain
the	true	parameter	value	with	the	probability	at	the	stated	confidence	level;a	credible	interval,	i.e.	a	set	of	values	containing,	for	example,	95%	of	posterior	belief;rejection	of	a	hypothesis;[note	1]clustering	or	classification	of	data	points	into	groups.Main	articles:	Statistical	model	and	Statistical	assumptionsAny	statistical	inference	requires	some
assumptions.	A	statistical	model	is	a	set	of	assumptions	concerning	the	generation	of	the	observed	data	and	similar	data.	Descriptions	of	statistical	models	usually	emphasize	the	role	of	population	quantities	of	interest,	about	which	we	wish	to	draw	inference.[7]	Descriptive	statistics	are	typically	used	as	a	preliminary	step	before	more	formal
inferences	are	drawn.[8]Statisticians	distinguish	between	three	levels	of	modeling	assumptions:Fully	parametric:	The	probability	distributions	describing	the	data-generation	process	are	assumed	to	be	fully	described	by	a	family	of	probability	distributions	involving	only	a	finite	number	of	unknown	parameters.[7]	For	example,	one	may	assume	that
the	distribution	of	population	values	is	truly	Normal,	with	unknown	mean	and	variance,	and	that	datasets	are	generated	by	'simple'	random	sampling.	The	family	of	generalized	linear	models	is	a	widely	used	and	flexible	class	of	parametric	models.Non-parametric:	The	assumptions	made	about	the	process	generating	the	data	are	much	less	than	in
parametric	statistics	and	may	be	minimal.[9]	For	example,	every	continuous	probability	distribution	has	a	median,	which	may	be	estimated	using	the	sample	median	or	the	HodgesLehmannSen	estimator,	which	has	good	properties	when	the	data	arise	from	simple	random	sampling.Semi-parametric:	This	term	typically	implies	assumptions	'in	between'
fully	and	non-parametric	approaches.	For	example,	one	may	assume	that	a	population	distribution	has	a	finite	mean.	Furthermore,	one	may	assume	that	the	mean	response	level	in	the	population	depends	in	a	truly	linear	manner	on	some	covariate	(a	parametric	assumption)	but	not	make	any	parametric	assumption	describing	the	variance	around	that
mean	(i.e.	about	the	presence	or	possible	form	of	any	heteroscedasticity).	More	generally,	semi-parametric	models	can	often	be	separated	into	'structural'	and	'random	variation'	components.	One	component	is	treated	parametrically	and	the	other	non-parametrically.	The	well-known	Cox	model	is	a	set	of	semi-parametric	assumptions.[citation
needed]See	also:	Statistical	model	validationThe	above	image	shows	a	histogram	assessing	the	assumption	of	normality,	which	can	be	illustrated	through	the	even	spread	underneath	the	bell	curve.Whatever	level	of	assumption	is	made,	correctly	calibrated	inference,	in	general,	requires	these	assumptions	to	be	correct;	i.e.	that	the	data-generating
mechanisms	really	have	been	correctly	specified.Incorrect	assumptions	of	'simple'	random	sampling	can	invalidate	statistical	inference.[10]	More	complex	semi-	and	fully	parametric	assumptions	are	also	cause	for	concern.	For	example,	incorrectly	assuming	the	Cox	model	can	in	some	cases	lead	to	faulty	conclusions.[11]	Incorrect	assumptions	of
Normality	in	the	population	also	invalidates	some	forms	of	regression-based	inference.[12]	The	use	of	any	parametric	model	is	viewed	skeptically	by	most	experts	in	sampling	human	populations:	"most	sampling	statisticians,	when	they	deal	with	confidence	intervals	at	all,	limit	themselves	to	statements	about	[estimators]	based	on	very	large	samples,
where	the	central	limit	theorem	ensures	that	these	[estimators]	will	have	distributions	that	are	nearly	normal."[13]	In	particular,	a	normal	distribution	"would	be	a	totally	unrealistic	and	catastrophically	unwise	assumption	to	make	if	we	were	dealing	with	any	kind	of	economic	population."[13]	Here,	the	central	limit	theorem	states	that	the	distribution
of	the	sample	mean	"for	very	large	samples"	is	approximately	normally	distributed,	if	the	distribution	is	not	heavy-tailed.Main	articles:	Statistical	distance,	Asymptotic	theory	(statistics),	and	Approximation	theoryGiven	the	difficulty	in	specifying	exact	distributions	of	sample	statistics,	many	methods	have	been	developed	for	approximating	these.With
finite	samples,	approximation	results	measure	how	close	a	limiting	distribution	approaches	the	statistic's	sample	distribution:	For	example,	with	10,000	independent	samples	the	normal	distribution	approximates	(to	two	digits	of	accuracy)	the	distribution	of	the	sample	mean	for	many	population	distributions,	by	the	BerryEsseen	theorem.[14]	Yet	for
many	practical	purposes,	the	normal	approximation	provides	a	good	approximation	to	the	sample-mean's	distribution	when	there	are	10	(or	more)	independent	samples,	according	to	simulation	studies	and	statisticians'	experience.[14]	Following	Kolmogorov's	work	in	the	1950s,	advanced	statistics	uses	approximation	theory	and	functional	analysis	to
quantify	the	error	of	approximation.	In	this	approach,	the	metric	geometry	of	probability	distributions	is	studied;	this	approach	quantifies	approximation	error	with,	for	example,	the	KullbackLeibler	divergence,	Bregman	divergence,	and	the	Hellinger	distance.[15][16][17]With	indefinitely	large	samples,	limiting	results	like	the	central	limit	theorem
describe	the	sample	statistic's	limiting	distribution	if	one	exists.	Limiting	results	are	not	statements	about	finite	samples,	and	indeed	are	irrelevant	to	finite	samples.[18][19][20]	However,	the	asymptotic	theory	of	limiting	distributions	is	often	invoked	for	work	with	finite	samples.	For	example,	limiting	results	are	often	invoked	to	justify	the	generalized
method	of	moments	and	the	use	of	generalized	estimating	equations,	which	are	popular	in	econometrics	and	biostatistics.	The	magnitude	of	the	difference	between	the	limiting	distribution	and	the	true	distribution	(formally,	the	'error'	of	the	approximation)	can	be	assessed	using	simulation.[21]	The	heuristic	application	of	limiting	results	to	finite
samples	is	common	practice	in	many	applications,	especially	with	low-dimensional	models	with	log-concave	likelihoods	(such	as	with	one-parameter	exponential	families).Main	article:	RandomizationSee	also:	Random	sample	and	Random	assignmentFor	a	given	dataset	that	was	produced	by	a	randomization	design,	the	randomization	distribution	of	a
statistic	(under	the	null-hypothesis)	is	defined	by	evaluating	the	test	statistic	for	all	of	the	plans	that	could	have	been	generated	by	the	randomization	design.	In	frequentist	inference,	the	randomization	allows	inferences	to	be	based	on	the	randomization	distribution	rather	than	a	subjective	model,	and	this	is	important	especially	in	survey	sampling
and	design	of	experiments.[22][23]	Statistical	inference	from	randomized	studies	is	also	more	straightforward	than	many	other	situations.[24][25][26]	In	Bayesian	inference,	randomization	is	also	of	importance:	in	survey	sampling,	use	of	sampling	without	replacement	ensures	the	exchangeability	of	the	sample	with	the	population;	in	randomized
experiments,	randomization	warrants	a	missing	at	random	assumption	for	covariate	information.[27]Objective	randomization	allows	properly	inductive	procedures.[28][29][30][31][32]	Many	statisticians	prefer	randomization-based	analysis	of	data	that	was	generated	by	well-defined	randomization	procedures.[33]	(However,	it	is	true	that	in	fields	of
science	with	developed	theoretical	knowledge	and	experimental	control,	randomized	experiments	may	increase	the	costs	of	experimentation	without	improving	the	quality	of	inferences.[34][35])	Similarly,	results	from	randomized	experiments	are	recommended	by	leading	statistical	authorities	as	allowing	inferences	with	greater	reliability	than	do
observational	studies	of	the	same	phenomena.[36]	However,	a	good	observational	study	may	be	better	than	a	bad	randomized	experiment.The	statistical	analysis	of	a	randomized	experiment	may	be	based	on	the	randomization	scheme	stated	in	the	experimental	protocol	and	does	not	need	a	subjective	model.[37][38]However,	at	any	time,	some
hypotheses	cannot	be	tested	using	objective	statistical	models,	which	accurately	describe	randomized	experiments	or	random	samples.	In	some	cases,	such	randomized	studies	are	uneconomical	or	unethical.It	is	standard	practice	to	refer	to	a	statistical	model,	e.g.,	a	linear	or	logistic	models,	when	analyzing	data	from	randomized	experiments.[39]
However,	the	randomization	scheme	guides	the	choice	of	a	statistical	model.	It	is	not	possible	to	choose	an	appropriate	model	without	knowing	the	randomization	scheme.[23]	Seriously	misleading	results	can	be	obtained	analyzing	data	from	randomized	experiments	while	ignoring	the	experimental	protocol;	common	mistakes	include	forgetting	the
blocking	used	in	an	experiment	and	confusing	repeated	measurements	on	the	same	experimental	unit	with	independent	replicates	of	the	treatment	applied	to	different	experimental	units.[40]Model-free	techniques	provide	a	complement	to	model-based	methods,	which	employ	reductionist	strategies	of	reality-simplification.	The	former	combine,
evolve,	ensemble	and	train	algorithms	dynamically	adapting	to	the	contextual	affinities	of	a	process	and	learning	the	intrinsic	characteristics	of	the	observations.[41][42]For	example,	model-free	simple	linear	regression	is	based	either	on:a	random	design,	where	the	pairs	of	observations	(	X	1	,	Y	1	)	,	(	X	2	,	Y	2	)	,	,	(	X	n	,	Y	n	)	{\displaystyle
(X_{1},Y_{1}),(X_{2},Y_{2}),\cdots	,(X_{n},Y_{n})}	are	independent	and	identically	distributed	(iid),or	a	deterministic	design,	where	the	variables	X	1	,	X	2	,	,	X	n	{\displaystyle	X_{1},X_{2},\cdots	,X_{n}}	are	deterministic,	but	the	corresponding	response	variables	Y	1	,	Y	2	,	,	Y	n	{\displaystyle	Y_{1},Y_{2},\cdots	,Y_{n}}	are	random	and
independent	with	a	common	conditional	distribution,	i.e.,	P	(	Y	j	y	|	X	j	=	x	)	=	D	x	(	y	)	{\displaystyle	P\left(Y_{j}\leq	y|X_{j}=x\right)=D_{x}(y)}	,	which	is	independent	of	the	index	j	{\displaystyle	j}	.In	either	case,	the	model-free	randomization	inference	for	features	of	the	common	conditional	distribution	D	x	(	.	)	{\displaystyle	D_{x}(.)}	relies	on
some	regularity	conditions,	e.g.	functional	smoothness.	For	instance,	model-free	randomization	inference	for	the	population	feature	conditional	mean,	(	x	)	=	E	(	Y	|	X	=	x	)	{\displaystyle	\mu	(x)=E(Y|X=x)}	,	can	be	consistently	estimated	via	local	averaging	or	local	polynomial	fitting,	under	the	assumption	that	(	x	)	{\displaystyle	\mu	(x)}	is	smooth.
Also,	relying	on	asymptotic	normality	or	resampling,	we	can	construct	confidence	intervals	for	the	population	feature,	in	this	case,	the	conditional	mean,	(	x	)	{\displaystyle	\mu	(x)}	.[43]Different	schools	of	statistical	inference	have	become	established.	These	schoolsor	"paradigms"are	not	mutually	exclusive,	and	methods	that	work	well	under	one
paradigm	often	have	attractive	interpretations	under	other	paradigms.Bandyopadhyay	and	Forster	describe	four	paradigms:	The	classical	(or	frequentist)	paradigm,	the	Bayesian	paradigm,	the	likelihoodist	paradigm,	and	the	Akaikean-Information	Criterion-based	paradigm.[44]Main	article:	Frequentist	inferenceThis	paradigm	calibrates	the
plausibility	of	propositions	by	considering	(notional)	repeated	sampling	of	a	population	distribution	to	produce	datasets	similar	to	the	one	at	hand.	By	considering	the	dataset's	characteristics	under	repeated	sampling,	the	frequentist	properties	of	a	statistical	proposition	can	be	quantifiedalthough	in	practice	this	quantification	may	be	challenging.p-
valueConfidence	intervalNull	hypothesis	significance	testingOne	interpretation	of	frequentist	inference	(or	classical	inference)	is	that	it	is	applicable	only	in	terms	of	frequency	probability;	that	is,	in	terms	of	repeated	sampling	from	a	population.	However,	the	approach	of	Neyman[45]	develops	these	procedures	in	terms	of	pre-experiment
probabilities.	That	is,	before	undertaking	an	experiment,	one	decides	on	a	rule	for	coming	to	a	conclusion	such	that	the	probability	of	being	correct	is	controlled	in	a	suitable	way:	such	a	probability	need	not	have	a	frequentist	or	repeated	sampling	interpretation.	In	contrast,	Bayesian	inference	works	in	terms	of	conditional	probabilities	(i.e.
probabilities	conditional	on	the	observed	data),	compared	to	the	marginal	(but	conditioned	on	unknown	parameters)	probabilities	used	in	the	frequentist	approach.The	frequentist	procedures	of	significance	testing	and	confidence	intervals	can	be	constructed	without	regard	to	utility	functions.	However,	some	elements	of	frequentist	statistics,	such	as
statistical	decision	theory,	do	incorporate	utility	functions.[citation	needed]	In	particular,	frequentist	developments	of	optimal	inference	(such	as	minimum-variance	unbiased	estimators,	or	uniformly	most	powerful	testing)	make	use	of	loss	functions,	which	play	the	role	of	(negative)	utility	functions.	Loss	functions	need	not	be	explicitly	stated	for
statistical	theorists	to	prove	that	a	statistical	procedure	has	an	optimality	property.[46]	However,	loss-functions	are	often	useful	for	stating	optimality	properties:	for	example,	median-unbiased	estimators	are	optimal	under	absolute	value	loss	functions,	in	that	they	minimize	expected	loss,	and	least	squares	estimators	are	optimal	under	squared	error
loss	functions,	in	that	they	minimize	expected	loss.While	statisticians	using	frequentist	inference	must	choose	for	themselves	the	parameters	of	interest,	and	the	estimators/test	statistic	to	be	used,	the	absence	of	obviously	explicit	utilities	and	prior	distributions	has	helped	frequentist	procedures	to	become	widely	viewed	as	'objective'.[47]See	also:
Bayesian	inferenceThe	Bayesian	calculus	describes	degrees	of	belief	using	the	'language'	of	probability;	beliefs	are	positive,	integrate	into	one,	and	obey	probability	axioms.	Bayesian	inference	uses	the	available	posterior	beliefs	as	the	basis	for	making	statistical	propositions.[48]	There	are	several	different	justifications	for	using	the	Bayesian
approach.Credible	interval	for	interval	estimationBayes	factors	for	model	comparisonMany	informal	Bayesian	inferences	are	based	on	"intuitively	reasonable"	summaries	of	the	posterior.	For	example,	the	posterior	mean,	median	and	mode,	highest	posterior	density	intervals,	and	Bayes	Factors	can	all	be	motivated	in	this	way.	While	a	user's	utility
function	need	not	be	stated	for	this	sort	of	inference,	these	summaries	do	all	depend	(to	some	extent)	on	stated	prior	beliefs,	and	are	generally	viewed	as	subjective	conclusions.	(Methods	of	prior	construction	which	do	not	require	external	input	have	been	proposed	but	not	yet	fully	developed.)Formally,	Bayesian	inference	is	calibrated	with	reference
to	an	explicitly	stated	utility,	or	loss	function;	the	'Bayes	rule'	is	the	one	which	maximizes	expected	utility,	averaged	over	the	posterior	uncertainty.	Formal	Bayesian	inference	therefore	automatically	provides	optimal	decisions	in	a	decision	theoretic	sense.	Given	assumptions,	data	and	utility,	Bayesian	inference	can	be	made	for	essentially	any
problem,	although	not	every	statistical	inference	need	have	a	Bayesian	interpretation.	Analyses	which	are	not	formally	Bayesian	can	be	(logically)	incoherent;	a	feature	of	Bayesian	procedures	which	use	proper	priors	(i.e.	those	integrable	to	one)	is	that	they	are	guaranteed	to	be	coherent.	Some	advocates	of	Bayesian	inference	assert	that	inference
must	take	place	in	this	decision-theoretic	framework,	and	that	Bayesian	inference	should	not	conclude	with	the	evaluation	and	summarization	of	posterior	beliefs.Main	article:	LikelihoodismLikelihood-based	inference	is	a	paradigm	used	to	estimate	the	parameters	of	a	statistical	model	based	on	observed	data.	Likelihoodism	approaches	statistics	by
using	the	likelihood	function,	denoted	as	L	(	x	|	)	{\displaystyle	L(x|\theta	)}	,	quantifies	the	probability	of	observing	the	given	data	x	{\displaystyle	x}	,	assuming	a	specific	set	of	parameter	values	{\displaystyle	\theta	}	.	In	likelihood-based	inference,	the	goal	is	to	find	the	set	of	parameter	values	that	maximizes	the	likelihood	function,	or	equivalently,
maximizes	the	probability	of	observing	the	given	data.The	process	of	likelihood-based	inference	usually	involves	the	following	steps:Formulating	the	statistical	model:	A	statistical	model	is	defined	based	on	the	problem	at	hand,	specifying	the	distributional	assumptions	and	the	relationship	between	the	observed	data	and	the	unknown	parameters.	The
model	can	be	simple,	such	as	a	normal	distribution	with	known	variance,	or	complex,	such	as	a	hierarchical	model	with	multiple	levels	of	random	effects.Constructing	the	likelihood	function:	Given	the	statistical	model,	the	likelihood	function	is	constructed	by	evaluating	the	joint	probability	density	or	mass	function	of	the	observed	data	as	a	function	of
the	unknown	parameters.	This	function	represents	the	probability	of	observing	the	data	for	different	values	of	the	parameters.Maximizing	the	likelihood	function:	The	next	step	is	to	find	the	set	of	parameter	values	that	maximizes	the	likelihood	function.	This	can	be	achieved	using	optimization	techniques	such	as	numerical	optimization	algorithms.
The	estimated	parameter	values,	often	denoted	as	y	{\displaystyle	{\bar	{y}}}	,	are	the	maximum	likelihood	estimates	(MLEs).Assessing	uncertainty:	Once	the	MLEs	are	obtained,	it	is	crucial	to	quantify	the	uncertainty	associated	with	the	parameter	estimates.	This	can	be	done	by	calculating	standard	errors,	confidence	intervals,	or	conducting
hypothesis	tests	based	on	asymptotic	theory	or	simulation	techniques	such	as	bootstrapping.Model	checking:	After	obtaining	the	parameter	estimates	and	assessing	their	uncertainty,	it	is	important	to	assess	the	adequacy	of	the	statistical	model.	This	involves	checking	the	assumptions	made	in	the	model	and	evaluating	the	fit	of	the	model	to	the	data
using	goodness-of-fit	tests,	residual	analysis,	or	graphical	diagnostics.Inference	and	interpretation:	Finally,	based	on	the	estimated	parameters	and	model	assessment,	statistical	inference	can	be	performed.	This	involves	drawing	conclusions	about	the	population	parameters,	making	predictions,	or	testing	hypotheses	based	on	the	estimated
model.Main	article:	Akaike	information	criterionThis	section	needs	expansion.	You	can	help	by	adding	to	it.	(November	2017)The	Akaike	information	criterion	(AIC)	is	an	estimator	of	the	relative	quality	of	statistical	models	for	a	given	set	of	data.	Given	a	collection	of	models	for	the	data,	AIC	estimates	the	quality	of	each	model,	relative	to	each	of	the
other	models.	Thus,	AIC	provides	a	means	for	model	selection.AIC	is	founded	on	information	theory:	it	offers	an	estimate	of	the	relative	information	lost	when	a	given	model	is	used	to	represent	the	process	that	generated	the	data.	(In	doing	so,	it	deals	with	the	trade-off	between	the	goodness	of	fit	of	the	model	and	the	simplicity	of	the	model.)Main
article:	Minimum	description	lengthThe	minimum	description	length	(MDL)	principle	has	been	developed	from	ideas	in	information	theory[49]	and	the	theory	of	Kolmogorov	complexity.[50]	The	(MDL)	principle	selects	statistical	models	that	maximally	compress	the	data;	inference	proceeds	without	assuming	counterfactual	or	non-falsifiable	"data-
generating	mechanisms"	or	probability	models	for	the	data,	as	might	be	done	in	frequentist	or	Bayesian	approaches.However,	if	a	"data	generating	mechanism"	does	exist	in	reality,	then	according	to	Shannon's	source	coding	theorem	it	provides	the	MDL	description	of	the	data,	on	average	and	asymptotically.[51]	In	minimizing	description	length	(or
descriptive	complexity),	MDL	estimation	is	similar	to	maximum	likelihood	estimation	and	maximum	a	posteriori	estimation	(using	maximum-entropy	Bayesian	priors).	However,	MDL	avoids	assuming	that	the	underlying	probability	model	is	known;	the	MDL	principle	can	also	be	applied	without	assumptions	that	e.g.	the	data	arose	from	independent
sampling.[51][52]The	MDL	principle	has	been	applied	in	communication-coding	theory	in	information	theory,	in	linear	regression,[52]	and	in	data	mining.[50]The	evaluation	of	MDL-based	inferential	procedures	often	uses	techniques	or	criteria	from	computational	complexity	theory.[53]Main	article:	Fiducial	inferenceFiducial	inference	was	an
approach	to	statistical	inference	based	on	fiducial	probability,	also	known	as	a	"fiducial	distribution".	In	subsequent	work,	this	approach	has	been	called	ill-defined,	extremely	limited	in	applicability,	and	even	fallacious.[54][55]	However	this	argument	is	the	same	as	that	which	shows[56]	that	a	so-called	confidence	distribution	is	not	a	valid	probability
distribution	and,	since	this	has	not	invalidated	the	application	of	confidence	intervals,	it	does	not	necessarily	invalidate	conclusions	drawn	from	fiducial	arguments.	An	attempt	was	made	to	reinterpret	the	early	work	of	Fisher's	fiducial	argument	as	a	special	case	of	an	inference	theory	using	upper	and	lower	probabilities.[57]Developing	ideas	of	Fisher
and	of	Pitman	from	1938	to	1939,[58]	George	A.	Barnard	developed	"structural	inference"	or	"pivotal	inference",[59]	an	approach	using	invariant	probabilities	on	group	families.	Barnard	reformulated	the	arguments	behind	fiducial	inference	on	a	restricted	class	of	models	on	which	"fiducial"	procedures	would	be	well-defined	and	useful.	Donald	A.	S.
Fraser	developed	a	general	theory	for	structural	inference[60]	based	on	group	theory	and	applied	this	to	linear	models.[61]	The	theory	formulated	by	Fraser	has	close	links	to	decision	theory	and	Bayesian	statistics	and	can	provide	optimal	frequentist	decision	rules	if	they	exist.[62]The	topics	below	are	usually	included	in	the	area	of	statistical
inference.Statistical	assumptionsStatistical	decision	theoryEstimation	theoryStatistical	hypothesis	testingRevising	opinions	in	statisticsDesign	of	experiments,	the	analysis	of	variance,	and	regressionSurvey	samplingSummarizing	statistical	dataPredictive	inference	is	an	approach	to	statistical	inference	that	emphasizes	the	prediction	of	future
observations	based	on	past	observations.Initially,	predictive	inference	was	based	on	observable	parameters	and	it	was	the	main	purpose	of	studying	probability,[citation	needed]	but	it	fell	out	of	favor	in	the	20th	century	due	to	a	new	parametric	approach	pioneered	by	Bruno	de	Finetti.	The	approach	modeled	phenomena	as	a	physical	system	observed
with	error	(e.g.,	celestial	mechanics).	De	Finetti's	idea	of	exchangeabilitythat	future	observations	should	behave	like	past	observationscame	to	the	attention	of	the	English-speaking	world	with	the	1974	translation	from	French	of	his	1937	paper,[63]	and	has	since	been	propounded	by	such	statisticians	as	Seymour	Geisser.[64]Algorithmic
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