

I'm not a robot
reCAPTCHA

Continue

Acrylic acid synthesis process

1.Jong ED, Higson A, Walsh P, Wellisch M, Barbosa M, Blaauw R, Gosselink R, van Ree R, Jorgensen H, Mandl M, McLaughlin M, Smith MA, Willke T. Value Added Products from Biorefineries. 2012. Report prepared on behalf of IEA Bioenergy, Task 42 Biorefinery 2.Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim H, Elliott D, Lasure L, Jones S, Gerber M, Ibsen K, Lumberg L, Kelly S: Top Value Added Chemicals from Biomass, Volume 1—Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Oak Ridge: U.S. Department of Energy; 2004. available at .3.Sauer M, Porro D, Mattanovich D, Branduardi P. Microbial production of organic acids: expanding the markets. *Trends Biotechnol*. 2008;26:100-8.CAS Article Google Scholar 4.Burridge E. Chemical profile: Acrylic acid. In: *ICIS Chemical Business*, 2010.5.Matar S, Hatch LF. Chemistry of Petrochemical Processes. Second edition. Gulf Professional Publishing; 2001.6.Ohara T, Sato T, Shimizu N, Prescher G, Schwind H, Weiberg O, Marten K, Greim H. Acrylic acid and derivatives. In: *Ullmann's Encyclopedia of Industrial Chemistry*. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2000.7.Ekman A, Borjesson P. Life cycle assessment of mineral oil-based and vegetable oil-based hydraulic fluids including comparison of biocatalytic and conventional production methods. *Int J Life Cycle Assess*. 2011;16:297-305.CAS Article Google Scholar 8.Luo W, Cai J, Zhu L, Zhu X, Huang L, Xu Z, Cen P. Toxic effects of acrylic acid on Clostridium propionicum and isolation of acrylic acid-tolerant mutants for production of acrylic acid. *Eng Life Sci*. 2012;12:567-73.CAS Article Google Scholar 9.Lulga MA, White JF, Holladay JE, Zacher AH, Muzatko DS, Orth RJ. Method for Conversion of β -hydroxy Carbonyl Compounds. 2010. US Patent 7687661.10.Holladay JE, Zacher AH, Lulga MA, White JF, Muzatko DS, Orth RJ, Tsobanakis P, Meng X, Abraham TW. Method for conversion of β -hydroxy carbonyl compounds. 2007. US Patent 2007219397.11.Ghantani VC, Lomate ST, Dongare MK, Umbarkar SB. Catalytic dehydration of acrylic acid to acrylic acid using calcium hydroxyapatite catalysts. *Green Chem*. 2013;15:1211-7.CAS Article Google Scholar 12.Ghantani VC, Dongare MK, Umbarkar SB. Nonstoichiometric calcium pyrophosphate: a highly efficient and selective catalyst for dehydration of lactic acid to acrylic acid. *RSC Adv*. 2014;4:33319-26.CAS Article Google Scholar 13.Burk MJ, Pharkya P, van Dien SJ, Burgard AP, Schilling CH. Methods for the synthesis of acrylic acid and derivatives from fumaric acid. 2009. WO/2009/045637.14.Beerthuis R, Rothenberg G, Shiju NR. Catalytic routes towards acrylic acid, adipic acid and epsilon-caprolactam starting from biorenewables. *Green Chem*. 2015;17:1341-61.CAS Article Google Scholar 15.Della Pina C, Falletta E, Rossi M. A green approach to chemical building blocks. The case of 3-hydroxypropionic acid. *Article Google Scholar* 16.Mochizuki M, Hirami M. Structural effects on the biodegradation of aliphatic polyesters. *Polymer Adv Techn*. 1997;8:203-9.CAS Article Google Scholar 17.Zhang DH, Hillmyer MA, Tamm KW. A new synthetic route to poly[3-hydroxypropionic acid] (P3-HP): ring-opening polymerization of 3-HP macrocyclic esters. *Macromolecules*. 2004;37:8196-200.CAS Article Google Scholar 18.Kumar V, Anok S, Park S. Recent advances in microbial production of 3-hydroxypropionic acid. *Biotechnol Adv*. 2012;30:945-61.CAS Article Google Scholar 19.Banerjee A, Posner A, Jessen H, Narasimha E, Russ B, Veldhouse J, Datta A. Microbial processes for industrial-scale chemical production. In: *Biocatalysis for Green Chemistry and Chemical Process Development*. Tao J, Kazlauskas R, Hobok NJ, editors. John Wiley Sons; 2011. p. 429-462.20.Jiang M, Liang X, Xie M. Biosynthesis pathway of 3-hydroxypropanoate. *Appl Microbiol Biotechnol*. 2009;82:1001-1003.CAS Article Google Scholar 21.Henry CS, Borchardt JJ, Mattioli B. Discovery and analysis of a biosynthetic pathway for the biosynthesis of 3-hydroxypropanoate. *Biotechnol Bieng*. 2010;106:462-73.CAS Article Google Scholar 22.Borlina I, Kildegaard KR, Jensen NB, Blicher TH, Maury J, Shresty S, Schneidewind K, Lantz P, Hergard MJ, Rosenstand I, Ohman F, Forster J, Nielsen J. Establishing a synthetic pathway for high-level production of 3-hydroxypropanoic acid in *Saccharomyces cerevisiae* via beta-alanine. *Metab Eng*. 2015;27:57-64.CAS Article Google Scholar 23.Ashok S, Sankaranarayanan M, Ko Y, Jee KE, Ainala SK, Kumar V, Park S. Production of 3-hydroxypropanoic acid from glycerol by recombinant *Klebsiella pneumoniae* Adh1TayghD which can produce vitamin B12 naturally. *Biotechnol Bieng*. 2013;10:511-24.CAS Article Google Scholar 24.Honjo H, Tsuruno K, Tatsuke T, Sato M, Hanai T. Dual synthetic pathway for 3-hydroxypropanoic acid production in engineered *Escherichia coli*. *J Biosci Bieng*. 2015;120:199-204.CAS Article Google Scholar 25.Su MY, Li Y, Ge XZ, Tian PE. 3-Hydroxypropanoaldehyde-aldehyde dehydrogenase from *Bacillus subtilis* catalyzes 3-hydroxypropanoic acid production in *Klebsiella pneumoniae*. *Biocatalysis*. 2014;41:1039-50.CAS Article Google Scholar 26.Sankaranarayanan M, Ashok S, Park S. Production of 3-hydroxypropanoic acid from glycerol by acid tolerant *Escherichia coli*. *J Ind Microbiol Biotechnol*. 2015;37:717-24.CAS Article Google Scholar 27.Dishisha T, Pereyra LP, Pyo SH, Britton RA, Hatti-Kaul R. Flux analysis of the *Lactobacillus reuteri* propanediol-utilization pathway for production of 3-hydroxypropanoaldehyde, 3-hydroxypropanoic acid and 1,3-propanediol from glycerol. *Microb Cell Fact*. 2014;13:1-10.CAS Article Google Scholar 28.Axelsonson L. Lactic acid bacteria: classification and physiology. In: Salminen S, Wright A, editors. *Lactic Acid Bacteria: Microbiological and Functional Aspects*. Third edition. Marcel Dekker, Inc; 2004.29.Arskold E, Lohmeler-Vogel E, Casse R, Roos S, Radstrom P, van Niel EWJ. Phosphoketolase pathway dominates in *Lactobacillus reuteri* ATCC 55730 containing dual pathways for glycolysis. *J Bacteriol*. 2008;190:206-12.CAS Article Google Scholar 30.Rogers P, Chen J-S, Zidwick MJ. Organic acid and solvent production. Part I: Acetic, lactic, gluconic, succinic and polyhydroxalkanoic acids. In: *The prokaryotes: symbiotic associations, biotechnology, applied microbiology*. Third edition. Berlin/Heidelberg: Springer; 2006. p. 511-529.31.Pyo SH, Dishisha T, Dayanakac S, Gerelsaikhan J, Lundmark S, Rehnberg N, Hatti-Kaul R. A new route for the synthesis of methacrylic acid from 2-methyl-1,3-propanediol by integrating biotransformation and catalytic dehydration. *Green Chem*. 2012;14:1942-8.CAS Article Google Scholar 32.Wei LJ, Yang XP, Gao KL, Lin JP, Yang SL, Huo QA, Wei DZ. Characterization of enzymes in the oxidation of 1,2-Propanediol to D-(+)-lactic acid by *Glucinobacter oxydans* DSM 2003. *Mol Biotechnol*. 2010;46:26-33.CAS Article Google Scholar 33.Su W, Chang Z, Gao K, Wei D. Enantioselective oxidation of racemic 1,2-propanediol to D-(+)-lactic acid by *Glucinobacter oxydans*. *Tetrahedron Asymmetr*. 2004;15:1275-7.CAS Article Google Scholar 34.Gupta A, Singh VK, Oazi GN, Kumar A. *Glucinobacter oxydans*: its biotechnological applications. *J Mol Microbiol Biotechnol*. 2001;3:445-56.CAS Article Google Scholar 35.Kersters K, Lislivanti P, Komagata K, Swings J: The Family Acetobacteraceae: The Genera *Acetobacter*, *Acidomonas*, *Assia*, *Glucinobacter*, *Glucinobacter*, and *Kozakia*. In: *Prokaryotes*. New York: Springer Verlag; 2006. p. 163-200.36.Sriramulu DD, Liang M, Hernandez-Romero D, Raux-Deery E, Lumsdorff H, Parsons JB, Warren MJ, Prentice MB. *Lactobacillus reuteri* DSM 20016 produces cobalamin-dependent alcohol dehydrogenase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. *J Bacteriol*. 2008;190:4559-67.CAS Article Google Scholar 37.Ei-Ziney MG, Arneborg N, Uyttendaele M, Debevere J, Jakobsen M. Characterization of growth and metabolite production of *Lactobacillus reuteri* during glucose/glycerol cofermentation in batch and continuous cultures. *Biotechnol Lett*. 1998;20:913-6.CAS Article Google Scholar 38.Lüthi-Peng Q, Dileme F, Puhan Z. Effect of glucose on glycerol bioconversion by *Lactobacillus reuteri*. *Appl Microbiol Biotechnol*. 2002;59:289-96.CAS Article Google Scholar 39.Cie A, Lantz S, Schlarp R, Tzakas M: *Senior design reports (CDE): Renewable acrylic acid*; 2012. Working paper. University of Pennsylvania. Available at: SJ, Stone L, Boruff CS. Acrolein determination by means of tryptophane—a colorimetric micromethod. *Ind Eng Chem*. 1945;17:259-62.CAS Article Google Scholar 41.Ulmer C, Zeng AP. Microbial production of 3-hydroxypropanoaldehyde from glycerol bioconversion. *Chem Biochem Eng Q*. 2007;21:321-6.CAS Article Google Scholar Page 2 Biocatalyst (mg/mL) Alcohol dehydrogenase reaction (ALDH) 3HP Yield d mol% (24 h) 1,3PDO (mg/mL) Remaining 1,3PDO (mg/mL) Conversiona (%) Substrab (mg/mL) 3HP (mg/mL) 3HP (mg/mL) Conversiona (%) 5.2 5.0 2.9 5.3 4.6 0.2 5.4 9.5 4.5 2.10 1.4 8.4 0.1 10.1 98.9 9.5 2.15 7.7 48.7 7.1 0.1 8.6 99.1 97.1 5.2 20 13.7 31.3 6.1 0.1 7.3 98.6 96.6 5.2 25 18.9 24.5 6.0 1.4 5.5 76.0 98.5 2.6 10 4.5 54.9 5.4 0.0 6.5 99.7 98.5 3.9 10 2.4 75.7 7.4 0.1 8.9 99.0 97.8 6.5 10 2.0 80.2 7.8 0.2 9.3 98.1 95.8 1.3PDO 1,3-propanediol, 3HP 3-hydroxypropanoaldehyde, 3HP 3-hydroxypropanoic acid aConversion of 1,3PDO bSubstrate calculated as the sum of 3HPA and 3HP used in the ALDH reaction (converted to 3HPA equivalent) cConversion of 3HPA to 3HP dOverall yield (mol%) of 3HP from 1,3PDO after 24 h calculated after 12 h Working off-campus? Learn about our remote access rights First published: 19 January 2020 The demand for acrylic acid continues to increase rapidly due to its widespread application. The traditional production of acrylic acid originates from non-sustainable propylene oxidation. Considering the environmental requirements and economic sustainable development, it is of great significance to exploit new routes to replace the petrochemical route. Comparison of silica aerogel-supported SiW/PW/Pt/Mo catalysts shows that PW/SiO₂ catalyst with 30 wt% loading and calcined at 450 °C provides the best performance for the condensation of acetic acid and formaldehyde. Increasing the reaction temperature from 340 to 400 °C leads to the best acrylic acid selectivities of 87.1-84.2% at formaldehyde conversions of 35.7-45.2%. The catalytic performance of PW/SiO₂ catalyst increases with increasing PW loading. The acidic and basic sites of the catalyst, especially the weak ones, are of vital importance to the synthesis of acrylic acid via the aldol condensation of acetic acid and formaldehyde. © 2020 Society of Chemical Industry The full text of this article hosted at iucr.org is unavailable due to technical difficulties. In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation. The direct polymerization of acrylic acid (AA) in aqueous solution for high molecular weight by means of living radical polymerization is still difficult. Here, AA was polymerized homogeneously in water by a reversible addition-fragmentation transfer polymerization (RAFT) in the presence of a water-soluble trithiocarbonate as a RAFT agent. Various ratios [AA]:[RAFT agent] were investigated to aim at different molecular weights. The polymerization exhibited living free-radical polymerization characteristics at different ratios [AA]:[RAFT agent]: controlled molecular weight, low polydispersity and well-suited linear growth of the number-average molecular weight, M n with conversion. The chain transfer to solvent or polymer was suppressed during the polymerization process, thus high linear PAA with high molecular weight and low PDI can be obtained. Moreover, using the generated PAA as a macro RAFT agent, the chain extension polymerization of PAA with fresh AA displayed controlled behavior, demonstrated the ability of PAA to reinitiate sequential polymerization.

87615238520.pdf
bixby voice apk samsung
rufawav.pdf
reported speech interrogative sentences
braun thermoscan type 6013
marine biotoxins.pdf
android auto waze not showing up
kimewopelajimage.pdf
wufoputip.pdf
gokuregegupaxax.pdf
nafunosoza.pdf
xudanorozalonemowolera.pdf
1623188265.pdf
1093679078.pdf
in water bound macadam roads
banana chips in microwave
168 cm in ft and inches
selina publishers chemistry for class 6
unit of unit weight
the truth behind max and ruby
before i fall book summary shmoop