
	

https://xuxogodukozame.nurepikis.com/288676786739589736835518775984634597790323?nawagabusumokaliwimikujazopolukenepukolilukemofididuwapikivonorewegumapikofaferinadejurunovefin=wiwakelitevosofalopinulifilotuwegixuvudakivugogunuxefijejoxodotowizubagasejesusujuledajagojotigevekuxaturetafozikenafixudevafepipabepolavizupapediwunowuvefigukazagubulegezunezusikukozifozabujujeririmu&utm_term=compare+hex+values+javascript&zojufigupodorenavidowamajoxugiwabanojedaxifelaburejeloli=kusovarubawopupomitokekofepenivubenilinitukewepirebotenedutedudoxevovibejafawokujuxuniredaxevemifubenitutivifa

Conditional	statements	are	used	to	perform	different	actions	based	on	different	conditions.	Conditional	Statements	Very	often	when	you	write	code,	you	want	to	perform	different	actions	for	different	decisions.	You	can	use	conditional	statements	in	your	code	to	do	this.	In	JavaScript	we	have	the	following	conditional	statements:	Use	if	to	specify	a
block	of	code	to	be	executed,	if	a	specified	condition	is	true	Use	else	to	specify	a	block	of	code	to	be	executed,	if	the	same	condition	is	false	Use	else	if	to	specify	a	new	condition	to	test,	if	the	first	condition	is	false	Use	switch	to	specify	many	alternative	blocks	of	code	to	be	executed	The	switch	statement	is	described	in	the	next	chapter.	The	if
Statement	Use	the	if	statement	to	specify	a	block	of	JavaScript	code	to	be	executed	if	a	condition	is	true.	Syntax	if	(condition)	{			//		block	of	code	to	be	executed	if	the	condition	is	true	}	Note	that	if	is	in	lowercase	letters.	Uppercase	letters	(If	or	IF)	will	generate	a	JavaScript	error.	Make	a	"Good	day"	greeting	if	the	hour	is	less	than	18:00:	if	(hour	<
18)	{			greeting	=	"Good	day";	}	The	result	of	greeting	will	be:	Try	it	Yourself	»	Use	the	else	statement	to	specify	a	block	of	code	to	be	executed	if	the	condition	is	false.	if	(condition)	{			//		block	of	code	to	be	executed	if	the	condition	is	true	}	else	{			//		block	of	code	to	be	executed	if	the	condition	is	false	}	If	the	hour	is	less	than	18,	create	a	"Good	day"
greeting,	otherwise	"Good	evening":	if	(hour	<	18)	{			greeting	=	"Good	day";	}	else	{			greeting	=	"Good	evening";	}	The	result	of	greeting	will	be:	Try	it	Yourself	»	The	else	if	Statement	Use	the	else	if	statement	to	specify	a	new	condition	if	the	first	condition	is	false.	Syntax	if	(condition1)	{			//		block	of	code	to	be	executed	if	condition1	is	true	}	else	if
(condition2)	{			//		block	of	code	to	be	executed	if	the	condition1	is	false	and	condition2	is	true	}	else	{			//		block	of	code	to	be	executed	if	the	condition1	is	false	and	condition2	is	false	}	If	time	is	less	than	10:00,	create	a	"Good	morning"	greeting,	if	not,	but	time	is	less	than	20:00,	create	a	"Good	day"	greeting,	otherwise	a	"Good	evening":	if	(time	<
10)	{			greeting	=	"Good	morning";	}	else	if	(time	<	20)	{			greeting	=	"Good	day";	}	else	{			greeting	=	"Good	evening";	}	The	result	of	greeting	will	be:	Try	it	Yourself	»	This	example	will	write	a	link	to	either	W3Schools	or	to	the	World	Wildlife	Foundation	(WWF).	By	using	a	random	number,	there	is	a	50%	chance	for	each	of	the	links.	let	text;	if
(Math.random()	<	0.5)	{			text	=	"Visit	W3Schools";	}	else	{			text	=	"Visit	WWF";	}	document.getElementById("demo").innerHTML	=	text;	Try	it	Yourself	»	This	article	possibly	contains	original	research.	Please	improve	it	by	verifying	the	claims	made	and	adding	inline	citations.	Statements	consisting	only	of	original	research	should	be	removed.
(August	2009)	(Learn	how	and	when	to	remove	this	message)	Programming	languages	can	be	grouped	by	the	number	and	types	of	paradigms	supported.	A	concise	reference	for	the	programming	paradigms	listed	in	this	article.	Concurrent	programming	–	have	language	constructs	for	concurrency,	these	may	involve	multi-threading,	support	for
distributed	computing,	message	passing,	shared	resources	(including	shared	memory),	or	futures	Actor	programming	–	concurrent	computation	with	actors	that	make	local	decisions	in	response	to	the	environment	(capable	of	selfish	or	competitive	behaviour)	Constraint	programming	–	relations	between	variables	are	expressed	as	constraints	(or
constraint	networks),	directing	allowable	solutions	(uses	constraint	satisfaction	or	simplex	algorithm)	Dataflow	programming	–	forced	recalculation	of	formulas	when	data	values	change	(e.g.	spreadsheets)	Declarative	programming	–	describes	what	computation	should	perform,	without	specifying	detailed	state	changes	cf.	imperative	programming
(functional	and	logic	programming	are	major	subgroups	of	declarative	programming)	Distributed	programming	–	have	support	for	multiple	autonomous	computers	that	communicate	via	computer	networks	Functional	programming	–	uses	evaluation	of	mathematical	functions	and	avoids	state	and	mutable	data	Generic	programming	–	uses	algorithms
written	in	terms	of	to-be-specified-later	types	that	are	then	instantiated	as	needed	for	specific	types	provided	as	parameters	Imperative	programming	–	explicit	statements	that	change	a	program	state	Logic	programming	–	uses	explicit	mathematical	logic	for	programming	Metaprogramming	–	writing	programs	that	write	or	manipulate	other	programs
(or	themselves)	as	their	data,	or	that	do	part	of	the	work	at	compile	time	that	would	otherwise	be	done	at	runtime	Template	metaprogramming	–	metaprogramming	methods	in	which	a	compiler	uses	templates	to	generate	temporary	source	code,	which	is	merged	by	the	compiler	with	the	rest	of	the	source	code	and	then	compiled	Reflective
programming	–	metaprogramming	methods	in	which	a	program	modifies	or	extends	itself	Object-oriented	programming	–	uses	data	structures	consisting	of	data	fields	and	methods	together	with	their	interactions	(objects)	to	design	programs	Class-based	–	object-oriented	programming	in	which	inheritance	is	achieved	by	defining	classes	of	objects,
versus	the	objects	themselves	Prototype-based	–	object-oriented	programming	that	avoids	classes	and	implements	inheritance	via	cloning	of	instances	Pipeline	programming	–	a	simple	syntax	change	to	add	syntax	to	nest	function	calls	to	language	originally	designed	with	none	Rule-based	programming	–	a	network	of	rules	of	thumb	that	comprise	a
knowledge	base	and	can	be	used	for	expert	systems	and	problem	deduction	&	resolution	Visual	programming	–	manipulating	program	elements	graphically	rather	than	by	specifying	them	textually	(e.g.	Simulink);	also	termed	diagrammatic	programming[1]	List	of	multi-paradigm	programming	languages	Language	Paradigm	count	Concurrent
Constraints	Dataflow	Declarative	Distributed	Functional	Metaprogramming	Generic	Imperative	Logic	Reflection	Object-oriented	Pipelines	Visual	Rule-based	Other	Ada[2][3][4][5][6]	5	Yes[a	1]	—	—	—	Yes	—	—	Yes	Yes	—	—	Yes[a	2]	—	—	—	—	ALF	2	—	—	—	—	—	Yes	—	—	—	Yes	—	—	—	—	—	—	AmigaE[citation	needed]	2	—	—	—	—	—	—	—	—	Yes	—	—
Yes[a	2]	—	—	—	—	APL	3	—	—	—	—	—	Yes	—	—	Yes	—	—	—	—	—	—	Array	(multi-dimensional)	BETA[citation	needed]	3	—	—	—	—	—	Yes	—	—	Yes	—	—	Yes[a	2]	—	—	—	—	C++	7	(15)	Yes[7][8][9]	Library[10]	Library[11][12]	Library[13][14]	Library[15][16]	Yes	Yes[17]	Yes[a	3]	Yes	Library[18][19]	Library[20]	Yes[a	2]	Library[21]	—	Library[22]	Array
(multi-dimensional;	using	STL)	C#	6	(7)	Yes	—	Library[a	4]	—	—	Yes[a	5]	—	Yes	Yes	—	Yes	Yes[a	2]	—	—	—	Reactive[a	6]	ChucK[citation	needed]	3	Yes	—	—	—	—	—	—	—	Yes	—	—	Yes[a	2]	—	—	—	—	Claire	2	—	—	—	—	—	Yes	—	—	—	—	—	Yes[a	2]	—	—	—	—	Clojure	5	Yes[23][24]	—	—	Yes	—	Yes[25]	Yes[26]	—	—	Library[27]	—	—	Yes[28]	—	—	Multiple
dispatch,[29]	Agents[30]	Common	Lisp	7	(14)	Library[31]	Library[32]	Library[33]	Yes[34]	Library[35]	Yes	Yes	Yes[36]	Yes	Library[37]	Yes	Yes[a	7][a	2][38]	Library[39]	Library[40]	Library[41]	Multiple	dispatch,	meta-OOP	system,[42]	Language	is	extensible	via	metaprogramming.	Curl	5	—	—	—	—	—	Yes	—	Yes[a	3]	Yes	—	Yes	Yes[a	2]	—	—	—	—	Curry
4	Yes	Yes	—	—	—	Yes	—	—	—	Yes	—	—	—	—	—	—	D	(version	2.0)[43][44]	7	Yes[a	8]	—	—	—	—	Yes	Yes[45][a	3]	Yes[a	3]	Yes	—	Yes	Yes[a	2]	—	—	—	—	Delphi	3	—	—	—	—	—	—	—	Yes[a	3]	Yes	—	—	Yes[a	2]	—	—	—	—	Dylan[citation	needed]	3	—	—	—	—	—	Yes	—	—	—	—	Yes	Yes[a	2]	—	—	—	—	E	3	Yes	—	—	—	Yes	—	—	—	—	—	—	Yes[a	2]	—	—	—	—
ECMAScript[46][47]	(ActionScript,	E4X,	JavaScript,	JScript)	4	(5)	Partial[a	9][a	10]	—	—	Library[48][49]	—	Yes	—	—	Yes	—	Yes	Yes[a	11]	Library[50][51]	—	—	Reactive,[a	12][52]	event	driven[a	13][a	14]	Erlang	3	Yes	—	—	Yes	Yes	Yes	—	—	—	—	—	—	Yes	—	—	—	Elixir	4	Yes	—	—	—	Yes	Yes	Yes	—	—	—	—	—	Yes	—	—	—	Elm	6	Yes	—	Yes	Yes	—	Yes	(pure)
[a	15]	—	Yes	—	—	—	—	Yes	—	—	Reactive	F#	7	(8)	Yes[a	8]	—	Library[a	4]	Yes	—	Yes	—	Yes	Yes	—	Yes	Yes[a	2]	—	—	—	Reactive[a	6]	Fortran	4	(5)	Yes	—	—	—	—	Yes[a	15]	—	Yes[a	16]	—	—	—	Yes[a	2]	—	—	—	Array	(multi-dimensional)	Go	4	Yes	—	—	—	—	—	—	—	Yes	—	Yes	—	Yes	—	—	—	Haskell	8	(15)	Yes	Library[53]	Library[54]	Yes	Library[55]	Yes
(lazy)	(pure)[a	15]	Yes[56]	Yes	Yes	Library[57]	—	Partial[a	17]	Yes	Yes	Library[58]	Literate,	reactive,	dependent	types	(partial)	Io	4	Yes[a	8]	—	—	—	—	Yes	—	—	Yes	—	—	Yes[a	11]	—	—	—	—	J[citation	needed]	3	—	—	—	—	—	Yes	—	—	Yes	—	—	Yes[a	2]	—	—	—	—	Java	6	Yes	Library[59]	Library[60]	—	—	Yes	—	Yes	Yes	—	Yes	Yes[a	2]	—	—	—	—	Julia	9	(17)
Yes	Library[61]	Library[62][63]	Library[64]	Yes	Yes	(eager)	Yes	Yes	Yes	Library[65]	Yes	Partial[a	18]	Yes	—	Library[66][67]	Multiple	dispatch,Array	(multi-dimensional);	optionally	lazy[68]	and	reactive	(with	libraries)	Kotlin	8	Yes	—	—	—	—	Yes	Yes	Yes	Yes	—	Yes	Yes	Yes	—	—	—	LabVIEW	4	Yes	—	Yes	—	—	—	—	—	—	—	—	Yes	—	Yes	—	—	Lava	2	—	—	—
—	—	—	—	—	—	—	—	Yes[a	2]	—	Yes	—	—	LispWorks	(version	6.0	with	support	for	symmetric	multi-processing,	rules,	logic	(Prolog),	CORBA)	9	Yes	—	—	—	Yes	Yes	Yes	—	Yes	Yes	Yes	Yes[a	2]	—	—	Yes	—	Lua[citation	needed]	3	—	—	—	—	—	Yes	—	—	Yes	—	—	Yes[a	11]	—	—	—	—	MATLAB	6	(10)	Toolbox[69]	Toolbox[70]	Yes[71]	—	Toolbox[72]	—	Yes[73]
Yes[74]	—	—	Yes[75]	Yes[76]	—	Yes[77]	—	Array	(multi-dimensional)	Nemerle	7	Yes	—	—	—	—	Yes	Yes	Yes	Yes	—	Yes	Yes[a	2]	—	—	—	—	Object	Pascal	4	Yes	—	—	—	—	Yes	—	—	Yes	—	—	Yes[a	2]	—	—	—	—	OCaml	4	—	—	—	—	—	Yes	—	Yes	Yes	—	—	Yes[a	2]	—	—	—	—	Oz	11	Yes	Yes	Yes	Yes	Yes	Yes	—	—	Yes	Yes	—	Yes[a	2]	Yes	—	Yes	—	Perl[citation
needed]	8	(9)	Yes[78]	—	Yes[79]	—	—	Yes	Yes	—	Yes	—	Yes[a	2]	Yes[a	2]	Yes	—	—	—	PHP[80][81][82]	4	—	—	—	—	—	Yes	—	—	Yes	—	Yes	Yes[a	2]	—	—	—	—	Poplog	3	—	—	—	—	—	Yes	—	—	Yes	Yes	—	—	—	—	—	—	Prograph	3	—	—	Yes	—	—	—	—	—	—	—	—	Yes[a	2]	—	Yes	—	—	Python	5	(10)	Library[83][84]	Library[85]	—	—	Library[86]	Yes	Yes[87][88]
Yes[89][90]	Yes	Library[91]	Yes	Yes[a	2]	—	—	—	Structured	R	4	(6)	Library[92]	—	—	—	Library[93]	Yes	—	—	Yes	—	Yes	Yes	Yes[94]	—	—	Array	(multi-dimensional)	Racket	10	Yes[95]	Yes[96]	Yes[97]	—	Yes[98]	Yes	Yes	—	Yes	Yes	Yes	Yes	—	—	—	Lazy[99]	Raku	10	Yes[100]	Library[101]	Yes[102]	—	Library[103]	Yes	Yes[104]	Yes[105]	Yes	—	Yes[106]
Yes[107]	Yes	—	—	Multiple	dispatch,	lazy	lists,	reactive.	ROOP	3	—	—	—	—	—	—	—	—	Yes	Yes	—	—	—	—	Yes	—	Ruby	5	—	—	—	—	—	Yes	Yes	—	Yes	—	Yes	Yes[a	2]	—	—	—	—	Rust	(version	1.0.0-alpha)	6	Yes[a	8]	—	—	—	—	Yes	Yes[108][109]	Yes[110]	Yes	—	—	Yes	—	—	—	Linear,	affline,	and	ownership	types	Sather[citation	needed]	2	—	—	—	—	—	Yes	—
—	—	—	—	Yes[a	2]	—	—	—	—	Scala[111][112]	9	Yes[a	8]	—	Yes[a	19]	Yes	—	Yes	Yes	Yes	Yes	—	Yes	Yes[a	2]	—	—	—	—	Simula[citation	needed]	2	—	—	—	—	—	—	—	—	Yes	—	—	Yes[a	2]	—	—	—	—	SISAL	3	Yes	—	Yes	—	—	Yes	—	—	—	—	—	—	—	—	—	—	Spreadsheets	2	—	—	—	—	—	Yes	—	—	—	—	—	—	—	Yes	—	—	Swift	7	Yes	—	—	—	—	Yes	Yes	Yes	Yes	—	Yes
Yes[a	2]	—	—	—	Block-structured	Tcl	with	Snit	extension[citation	needed]	3	—	—	—	—	—	Yes[113]	—	—	Yes	—	—	Yes[a	11][114]	—	—	—	—	Visual	Basic	.NET	6	(7)	Yes	—	Library[a	4]	—	—	Yes	—	Yes	Yes	—	Yes	Yes[a	2]	—	—	—	Reactive[a	6]	Windows	PowerShell	6	—	—	—	—	—	Yes	—	Yes	Yes	—	Yes	Yes[a	2]	Yes	—	—	—	Wolfram	Language	&	Mathematica
13[115]	(14)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes[116]	—	Yes	Knowledge	Based	Programming	paradigm	List	of	programming	languages	by	type	Domain-specific	language	Domain-specific	multimodeling	^	rendezvous	and	monitor-like	based	^	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z	aa	ab	ac	ad	ae	af	ag	ah	ai	class-based	^	a	b	c	d
e	template	metaprogramming	^	a	b	c	using	TPL	Dataflow	^	only	lambda	support	(lazy	functional	programming)	^	a	b	c	using	Reactive	Extensions	(Rx)	^	multiple	dispatch,	method	combinations	^	a	b	c	d	e	actor	programming	^	promises,	native	extensions	^	using	Node.js'	cluster	module	or	child_process.fork	method,	web	workers	in	the	browser,	etc.
^	a	b	c	d	Prototype-based	^	using	Reactive	Extensions	(RxJS)	^	in	Node.js	via	their	events	module	^	in	browsers	via	their	native	EventTarget	API	^	a	b	c	purely	functional	^	parameterized	classes	^	immutable	^	Uses	structs	with	function	polymorphism	and	multiple	dispatch	^	Akka	Archived	2013-01-19	at	the	Wayback	Machine	^	Bragg,	S.D.;
Driskill,	C.G.	(20–22	September	1994).	"Diagrammatic-graphical	programming	languages	and	DoD-STD-2167A".	Proceedings	of	AUTOTESTCON	'94	(IEEEXplore).	Institute	of	Electrical	and	Electronics	Engineers	(IEEE).	pp.	211–220.	doi:10.1109/AUTEST.1994.381508.	ISBN	978-0-7803-1910-3.	S2CID	62509261.	^	Ada	Reference	Manual,	ISO/IEC
8652:2005(E)	Ed.	3,	Section	9:	Tasks	and	Synchronization	^	Ada	Reference	Manual,	ISO/IEC	8652:2005(E)	Ed.	3	Annex	E:	Distributed	Systems	^	Ada	Reference	Manual,	ISO/IEC	8652:2005(E)	Ed.	3,	Section	12:	Generic	Units	^	Ada	Reference	Manual,	ISO/IEC	8652:2005(E)	Ed.	3,	Section	6:	Subprograms	^	Ada	Reference	Manual,	ISO/IEC
8652:2005(E)	Ed.	3,	3.9	Tagged	Types	and	Type	Extensions	^	Thread	support	^	Atomics	support	^	Memory	model	^	Gecode	^	SystemC	^	Boost.Iostreams	^	Boolinq	^	"AraRat"	(PDF).	Archived	from	the	original	(PDF)	on	2019-08-19.	Retrieved	2019-09-15.	^	OpenMPI	^	Boost.MPI	^	Boost.MPL	^	LC++	^	Castor	Archived	2013-01-25	at	the	Wayback
Machine	^	Reflect	Library	^	N3534	^	Boost.Spirit	^	Clojure	-	Concurrent	Programming	^	Clojure	-	core.async	^	Clojure	-	Functional	Programming	^	Clojure	-	Macros	^	Clojure	-	core.logic	^	Clojure	-	Threading	Macros	Guide	^	Multimethods	and	Hierarchies	^	Agents	and	Asynchronous	Actions	^	"concurrency".	CLiki.	^	[1]	constraint	programming
inside	CL	through	extensions	^	[2]	dataflow	extension	^	[3]	by	creating	DSLs	using	the	built-in	metaprogramming;	also	see	note	on	functional,	constraint	and	logic	paradigms,	which	are	part	of	declarative	^	[4]	MPI,	etc	via	language	extensions	^	template	metaprogramming	using	macros	(see	C++)	^	[5]	[6]	[7]	Prolog	implemented	as	a	language
extension	^	Common	Lisp	Object	System	see	Wikipedia	article	on	CLOS,	the	Common	Lisp	Object	System.	^	implemented	by	the	user	via	a	short	macro,	example	of	implementation	^	-	Visual	programming	tool	based	on	Common	Lisp	^	[8]	rule-based	programming	extension	^	[9]	Archived	2018-04-26	at	the	Wayback	Machine	through	the	Meta	Object
Protocol	^	D	Language	Feature	Table	^	Phobos	std.algorithm	^	D	language	String	Mixins	^	The	Little	JavaScripter	demonstrates	fundamental	commonality	with	Scheme,	a	functional	language.	^	Object-Oriented	Programming	in	JavaScript	Archived	2019-02-10	at	the	Wayback	Machine	gives	an	overview	of	object-oriented	programming	techniques	in
JavaScript.	^	"React	–	A	JavaScript	library	for	building	user	interfaces".	2019-04-08.	^	"TNG-Hooks".	GitHub.	2019-04-08.	^	"Lodash	documentation".	2019-04-08.	^	"mori".	2019-04-08.	^	"TNG-Hooks".	GitHub.	2019-04-08.	^	"Prolog	embedding".	Haskell.org.	^	"Functional	Reactive	Programming".	HaskellWiki.	^	Cloud	Haskell	^	"Template	Haskell".
HaskellWiki.	^	"Logict:	A	backtracking	logic-programming	monad".	Haskell.org.	^	Kollmansberger,	Steve;	Erwig,	Martin	(30	May	2006).	"Haskell	Rules:	Embedding	Rule	Systems	in	Haskell"	(PDF).	Oregon	State	University.	^	JSR	331:	Constraint	Programming	API	^	Google	Cloud	Platform	Dataflow	SDK	^	"JuliaOpt/JuMP.jl".	GitHub.	JuliaOpt.	11
February	2020.	Retrieved	12	February	2020.	^	"GitHub	-	MikeInnes/DataFlow.jl".	GitHub.	2019-01-15.	^	"GitHub	-	JuliaGizmos/Reactive.jl:	Reactive	programming	primitives	for	Julia".	GitHub.	2018-12-28.	^	Query	almost	anything	in	julia	^	A	collection	of	Kanren	implementations	in	Julia	^	"GitHub	-	abeschneider/PEGParser.jl:	PEG	Parser	for	Julia".
GitHub.	2018-12-03.	^	"GitHub	-	gitfoxi/Parsimonious.jl:	A	PEG	parser	generator	for	Julia".	GitHub.	2017-08-03.	^	Lazy	^	"Execute	loop	iterations	in	parallel".	mathworks.com.	Retrieved	21	October	2016.	^	"Write	Constraints".	mathworks.com.	Retrieved	21	October	2016.	^	"Getting	Started	with	SimEvents".	mathworks.com.	Retrieved	21	October
2016.	^	"Execute	loop	iterations	in	parallel".	mathworks.com.	Retrieved	21	October	2016.	^	"Execute	MATLAB	expression	in	text	-	MATLAB	eval".	mathworks.com.	Retrieved	21	October	2016.	^	"Determine	class	of	object".	mathworks.com.	Retrieved	21	October	2016.	^	"Class	Metadata".	mathworks.com.	Retrieved	21	October	2016.	^	"Object-
Oriented	Programming".	mathworks.com.	Retrieved	21	October	2016.	^	"Simulink".	mathworks.com.	Retrieved	21	October	2016.	^	interpreter	based	threads	^	Higher	Order	Perl	^	PHP	Manual,	Chapter	17.	Functions	^	PHP	Manual,	Chapter	19.	Classes	and	Objects	(PHP	5)	^	PHP	Manual,	Anonymous	functions	^	"Parallel	Processing	and
Multiprocessing	in	Python".	Python	Wiki.	Retrieved	21	October	2016.	^	"threading	—	Higher-level	threading	interface".	docs.python.org.	Retrieved	21	October	2016.	^	"python-constraint".	pypi.python.org.	Retrieved	21	October	2016.	^	"DistributedProgramming".	Python	Wiki.	Retrieved	21	October	2016.	^	"Chapter	9.	Metaprogramming".
chimera.labs.oreilly.com.	Archived	from	the	original	on	23	October	2016.	Retrieved	22	October	2016.	^	"Metaprogramming".	readthedocs.io.	Retrieved	22	October	2016.	^	"PEP	443	–	Single-dispatch	generic	functions".	python.org.	Retrieved	22	October	2016.	^	"PEP	484	–	Type	Hints".	python.org.	Retrieved	22	October	2016.	^	"PyDatalog".
Retrieved	22	October	2016.	^	"Futureverse".	^	"future	batchtools".	^	"Magrittr:	A	Forward	Pipe	Operator	for	R".	cran.r-project.org\access-date=13	July	2017.	17	November	2020.	^	Racket	Guide:	Concurrency	and	Synchronization	^	The	Rosette	Guide	^	FrTime:	A	Language	for	Reactive	Programs	^	Racket	Guide:	Distributed	Places	^	Lazy	Racket	^
Channels	and	other	mechanisms	^	"Problem	Solver	module".	^	Feed	operator	^	Cro	module	^	"Meta-programming:	What,	why	and	how".	2011-12-14.	^	Parametrized	Roles	^	"Meta-object	protocol	(MOP)".	^	Classes	and	Roles	^	"The	Rust	macros	guide".	Rust.	Retrieved	19	January	2015.	^	"The	Rust	compiler	plugins	guide".	Rust.	Retrieved	19
January	2015.	^	The	Rust	Reference	§6.1.3.1	^	An	Overview	of	the	Scala	Programming	Language	^	Scala	Language	Specification	^	"Tcl	Programming/Introduction".	en.wikibooks.org.	Retrieved	22	October	2016.	^	"TCLLIB	-	Tcl	Standard	Library:	snitfaq".	sourceforge.net.	Retrieved	22	October	2016.	^	Notes	for	Programming	Language	Experts,
Wolfram	Language	Documentation.	^	External	Programs,	Wolfram	Language	Documentation.	Jim	Coplien,	Multiparadigm	Design	for	C++,	Addison-Wesley	Professional,	1998.	Retrieved	from	"	I	need	to	pare	two	hex	values	that	are	ing	from	a	xml	tag	attribute	field,	I'm	trying	this:var	filI	need	to	pare	two	hex	values	that	are	ing	from	a	xml	tag	attribute
field,	I'm	trying	this:	var	fill	=	$(this).attr("fill");	//	console.log(fill.toString(16));	if	(fill	===	"#FF00FF")	But	is	not	working	any	ideas?	I	need	to	pare	two	hex	values	that	are	ing	from	a	xml	tag	attribute	field,	I'm	trying	this:	var	fill	=	$(this).attr("fill");	//	console.log(fill.toString(16));	if	(fill	===	"#FF00FF")	But	is	not	working	any	ideas?	Share
Improve	this	question	asked	May	12,	2012	at	7:44	Ricardo	SanchezRicardo	Sanchez	5,1971212	gold	badges6161	silver	badges9595	bronze	badges	7	1	Isn't	it	redundant	to	do	a	toString()	when	jQuery's	attr	already	returns	a	string?	–	Joseph	Commented	May	12,	2012	at	7:46	I'm	doing	toString	just	to	see	what	I	get	in	the	console,	I'm	not	using	the
value	still	the	if	statement	fails	–	Ricardo	Sanchez	Commented	May	12,	2012	at	7:47	Your	code	should	work	assuming	the	"fill"	attribute	looks	like	"#FF00FF",	hash	included.	–	DanRedux	Commented	May	12,	2012	at	7:49	Anyways,	did	you	try	to	check	what	fill	is?	like	typeof	fill?	did	you	try	to	console.log(fill)?	what	does	it	result	to?	–	Joseph
Commented	May	12,	2012	at	7:50	it	results	in	plain	#FF00FF	and	other	hex	values	–	Ricardo	Sanchez	Commented	May	12,	2012	at	7:51		|		Show	2	more	ments	3	Answers	3	Sorted	by:	Reset	to	default	1	attr	returns	a	string,	there's	no	need	to	call	toString	on	it	(and	the	argument	will	be	ignored,	because	String's	toString	doesn't	take	an	argument).
Your	code	is	assuming	a	couple	of	things:	That	the	attribute	es	back	in	#hex	form	(if	it's	a	color	value,	this	is	not	reliably	true	cross-browser).	That	it	will	be	in	all	upper	case.	Not	knowing	what	you	see	when	you	log	the	value,	I'll	just	address	the	second	part:	var	fill	=	$(this).attr("fill");	if	(fill.toUpperCase()	===	"#FF00FF")	I	think	you	have	to	use	2
equal	signs	there,	try	this...	var	fill	=	$(this).attr("fill");	if	(fill	==	"#FF00FF")	If	that	doesn't	work,	then	you	probably	not	identifying	$(this)	If	fill	is	a	color,	then	it	might	be	returned	in	RGB-format.	And	when	you	log	it	you	write	toString().	Either	pare	it	with	a	RGB-value	or	pare	it	with	a	string	as	fill.toString(16)	发布者：admin，转转请注明出处：	You
signed	in	with	another	tab	or	window.	Reload	to	refresh	your	session.	You	signed	out	in	another	tab	or	window.	Reload	to	refresh	your	session.	You	switched	accounts	on	another	tab	or	window.	Reload	to	refresh	your	session.	Dismiss	alert	Instantly	share	code,	notes,	and	snippets.	Clone	this	repository	at	<script	src="	quot;></script>	Save
tiff/887032	to	your	computer	and	use	it	in	GitHub	Desktop.	Clone	this	repository	at	<script	src="	quot;></script>	Save	tiff/887032	to	your	computer	and	use	it	in	GitHub	Desktop.	Compare	two	color	values	in	different	formats	(rgb,	hex,	color	keyname,	...)	You	can’t	perform	that	action	at	this	time.	Is	there	an	existing	function	to	compare	a	number	(0-
255)	with	a	hex	value	that	is	written	in	chars,	such	as	char	value_in_chars[]	=	{'A',	'2'};	byte	number	=	0xA2;	//	or	number	=162;	?	Or	is	the	only	solution	ASCII	arithmetic?	To	make	matters	worse,	I	can	not	be	certain	if	the	value_in_char	only	contains	upper	case	or	maybe	also	lowercase	letters.	Background:	The	value_in_chars	is	the	checksum	of	a
NMEA0183	sentence	which	is	appended	to	the	sentence,	hence	it's	of	the	type	char.	To	verify	the	sentence,	I	calculate	my	own	checksum	and	get	the	result	as	a	number.	Comparison	and	Logical	operators	are	used	to	test	for	true	or	false.	Comparison	Operators	Comparison	operators	are	used	in	logical	statements	to	determine	equality	or	difference
between	variables	or	values.	Given	that	x	=	5,	the	table	below	explains	the	comparison	operators:	Comparison	operators	can	be	used	in	conditional	statements	to	compare	values	and	take	action	depending	on	the	result:	if	(age	<	18)	text	=	"Too	young	to	buy	alcohol";	You	will	learn	more	about	the	use	of	conditional	statements	in	the	next	chapter	of
this	tutorial.	Logical	Operators	Logical	operators	are	used	to	determine	the	logic	between	variables	or	values.	Given	that	x	=	6	and	y	=	3,	the	table	below	explains	the	logical	operators:	Operator	Description	Example	Try	it	&&	and	(x	<	10	&&	y	>	1)	is	true	Try	it	»	||	or	(x	==	5	||	y	==	5)	is	false	Try	it	»	!	not	!(x	==	y)	is	true	Try	it	»	Conditional
(Ternary)	Operator	JavaScript	also	contains	a	conditional	operator	that	assigns	a	value	to	a	variable	based	on	some	condition.	Syntax	variablename	=	(condition)	?	value1:value2		Example	let	voteable	=	(age	<	18)	?	"Too	young":"Old	enough";	Try	it	Yourself	»	If	the	variable	age	is	a	value	below	18,	the	value	of	the	variable	voteable	will	be	"Too	young",
otherwise	the	value	of	voteable	will	be	"Old	enough".	Comparing	Different	Types	Comparing	data	of	different	types	may	give	unexpected	results.	When	comparing	a	string	with	a	number,	JavaScript	will	convert	the	string	to	a	number	when	doing	the	comparison.	An	empty	string	converts	to	0.	A	non-numeric	string	converts	to	NaN	which	is	always
false.	When	comparing	two	strings,	"2"	will	be	greater	than	"12",	because	(alphabetically)	1	is	less	than	2.	To	secure	a	proper	result,	variables	should	be	converted	to	the	proper	type	before	comparison:	age	=	Number(age);	if	(isNaN(age))	{			voteable	=	"Input	is	not	a	number";	}	else	{			voteable	=	(age	<	18)	?	"Too	young"	:	"Old	enough";	}	Try	it
Yourself	»	The	Nullish	Coalescing	Operator	(??)	The	??	operator	returns	the	first	argument	if	it	is	not	nullish	(null	or	undefined).	Otherwise	it	returns	the	second	argument.	The	nullish	operator	is	supported	in	all	browsers	since	March	2020:	Chrome	80	Edge	80	Firefox	72	Safari	13.1	Opera	67	Feb	2020	Feb	2020	Jan	2020	Mar	2020	Mar	2020	The
Optional	Chaining	Operator	(?.)	The	?.	operator	returns	undefined	if	an	object	is	undefined	or	null	(instead	of	throwing	an	error).	//	Create	an	object:	const	car	=	{type:"Fiat",	model:"500",	color:"white"};	//	Ask	for	car	name:	document.getElementById("demo").innerHTML	=	car?.name;	Try	it	Yourself	»	The	optional	chaining	operator	is	supported	in	all
browsers	since	March	2020:	Chrome	80	Edge	80	Firefox	72	Safari	13.1	Opera	67	Feb	2020	Feb	2020	Jan	2020	Mar	2020	Mar	2020	Choose	the	correct	comparison	operator	to	alert	true,	when	x	is	greater	than	y.	x	=	10;	y	=	5;	alert(x	@(1)	y);	x	=	10;	y	=	5;	alert(x	>	y);	Correct!	Next	❯	What	i	want	to	do	is	to	check	the	elements	of	array	which	are
bytes	are	greater	or	less	than	some	hex	value?	so	i'm	trying	write	like	this	->	bytes[]	chars	=	new	bytes[]	{some	hex	values};	foreach(byte	b	in	chars){	if(b>	hex	value	&&	b<	hex	halue)	--->	some	code	}	Input	your	age	and	click	the	button:	How	can	financial	brands	set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn
MoreThe	Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The	CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	FavoritesHow	can	financial	brands	set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe
Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The	CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	FavoritesHow	can	financial	brands	set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe
Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The	CollectionCurated,	compelling,	and	worth	your	time.	Explore	our	latest	gallery	of	Editors’	Picks.Browse	Editors'	Favorites	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,
transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests
the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not
have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you
use	the	material.

