

Click to verify

An embryo represents the initial stage of development in a multicellular organism. This period is characterized by rapid cell division and the establishment of the basic body plan. In organisms that reproduce sexually, this phase begins after fertilization, transforming a single cell into a complex structure with the potential to form specialized tissues and organs. In humans, the developing organism is referred to as an embryo from the first cell division until about the eighth week after fertilization. The Beginning of Embryonic Life The journey of an embryo starts with fertilization, the fusion of two specialized sex cells, known as gametes—a sperm from the male and an egg from the female. This union creates a single diploid cell called a zygote, which contains a complete set of genetic material from both parents. This event typically occurs in the fallopian tube. Shortly after fertilization, the zygote begins a process of rapid cell division known as cleavage. During this phase, the single cell divides into two, then four, then eight cells, and so on, without a significant increase in the overall size of the organism. This cluster of cells, now termed an embryo, continues its journey toward the uterus. Key Stages of Embryonic Development After the initial cell divisions, the embryo develops into a blastocyst around five to six days after fertilization. The blastocyst is a hollow ball of cells with two distinct parts: an outer layer that will eventually form the placenta and an inner cell mass that will develop into the fetus itself. This structure travels to the uterus, where it must attach to and embed within the uterine wall, a process called implantation, which generally completes around 9 or 10 days after fertilization. Once implanted, the embryo undergoes a transformative process called gastrulation, which begins around the third week. During gastrulation, the inner cell mass reorganizes itself into three primary germ layers. These layers are the ectoderm, the mesoderm, and the endoderm. Each layer is destined to give rise to specific tissues and organs. The ectoderm, or outer layer, is responsible for forming the epidermis, which includes the skin, hair, and nails. It also gives rise to the entire nervous system, including the brain and spinal cord, as well as various sensory organs. The middle layer, the mesoderm, develops into the body's structural components, such as the skeleton, muscles, and connective tissues. It also forms the circulatory system, including the heart and blood vessels, and the urogenital system. The innermost layer, the endoderm, forms the epithelial lining of the digestive and respiratory tracts and associated organs like the liver and pancreas. The formation of these germ layers sets the stage for organogenesis, which starts around the third week and continues through the eighth week. The heart is one of the first functional organs to develop, beginning to beat and pump blood around day 22. By the end of the embryonic period, the rudimentary forms of all major organ systems have been established. From Embryo to Fetus The transition from an embryo to a fetus occurs at the end of the eighth week after fertilization, which corresponds to about the tenth week of pregnancy. By this point, the developing organism has established recognizable human features, such as limbs, fingers, and a more defined facial structure. The primary distinction between the embryonic and fetal stages lies in the nature of development. The embryonic stage is defined by the formation of structures and organ systems. In contrast, the fetal stage is primarily focused on growth and maturation. From the ninth week onward, the now-called fetus will continue to grow in size and weight, and its organs will mature and become functional. Embryonic Development in Other Species While the basic principles of embryogenesis, such as cell division and differentiation, are common across the animal kingdom, the specifics of development can vary significantly between species. These differences are often tied to the environment in which the embryo develops. For example, the development of a chick embryo inside an egg is supported by a large yolk, which provides all the necessary nutrients until hatching. In contrast, mammalian embryos, including humans, develop inside the mother's body and rely on a placenta for nourishment and waste exchange. Although mammals do not have a large yolk, their embryonic development retains features from their reptilian ancestors, such as the formation of a yolk sac in early stages, even though it serves different functions. By the end of this section, you will be able to: Describe how, when, and why the body metabolizes proteins Explain how the urea cycle prevents toxic concentrations of nitrogen Differentiate between glucogenic and ketogenic amino acids Explain how protein can be used for energy Much of the body is made of protein, and these proteins take on a myriad of forms. They represent cell signaling receptors, signaling molecules, structural members, enzymes, intracellular matrix scaffolds, ion pumps, ion channels, oxygen and CO₂ transporters (hemoglobin). That is not even the complete list! There is protein in bones (collagen), muscles, and tendons; the hemoglobin that transports oxygen; and enzymes that catalyze all biochemical reactions. Protein is also used for growth and repair. Amid all these necessary functions, proteins also hold the potential to serve as a metabolic fuel source. Proteins are not stored for later use, so excess proteins must be converted into glucose or triglycerides, and used to supply energy or build energy reserves. Although the body can synthesize proteins from amino acids, food is an important source of those amino acids, especially because humans cannot synthesize all of the 20 amino acids used to build proteins. The digestion of proteins begins in the stomach. When protein-rich foods enter the stomach, they are greeted by a mixture of the enzyme pepsin and hydrochloric acid (HCl; 0.5 percent). The latter produces an environmental pH of 1.5–3.5 that denatures proteins within food. Pepsin cuts proteins into smaller polypeptides and their constituent amino acids. When the food-gastric juice mixture (chyme) enters the small intestine, the pancreas releases sodium bicarbonate to neutralize the HCl. This helps to protect the lining of the intestine. The small intestine also releases digestive hormones, including secretin and CCK, which stimulate digestive processes to break down the proteins further. Secretin also stimulates the pancreas to release sodium bicarbonate. The pancreas releases most of the digestive enzymes, including the proteases trypsin, chymotrypsin, carboxypeptidase, and elastase, which aid protein digestion. Together, all of these enzymes break complex proteins into smaller individual amino acids (Figure 24.4.1), which are then transported across the intestinal mucosa to be used to create new proteins, or to be converted into fats or acetyl CoA and used in the Krebs cycle. Figure 24.4.1 – Digestive Enzymes and Hormones: Enzymes in the stomach and small intestine break down proteins into amino acids. HCl in the stomach aids in protein digestion by denaturing proteins, and hormones secreted by intestinal cells direct the digestive processes. In order to avoid breaking down the proteins that make up the pancreas and small intestine, pancreatic enzymes are released as inactive proenzymes that are only activated in the small intestine. In the pancreas, vesicles store trypsin, chymotrypsin, and carboxypeptidase as trypsinogen, chymotrypsinogen, and procarboxypeptidase. Once released into the small intestine, an enzyme found in the wall of the small intestine, called enterokinase, binds to trypsinogen and converts it into its active form, trypsin. Trypsin then binds to chymotrypsinogen and procarboxypeptidase to convert it into the active chymotrypsin and carboxypeptidase. Trypsin, chymotrypsin, and carboxypeptidase break down large proteins into smaller peptides, a process called proteolysis. These smaller peptides are catalyzed into their constituent amino acids by the brush border enzymes, aminopeptidase and dipeptidase. The free amino acids are then transported across the apical surface of the intestinal mucosa in a process that is mediated by secondary active transport using sodium–amino acid transporters. These transporters bind sodium and then bind the amino acid to transport it across the membrane. At the basal surface of the mucosal cells, the sodium and amino acid are released. The sodium can be reused in the transporter, whereas the amino acids are transferred into the bloodstream to be transported to the liver and cells throughout the body for protein synthesis. Freely available amino acids are used to create proteins. If amino acids exist in excess, the body has no capacity or mechanism for their storage; thus, they are converted into glucose or ketones, or they are decomposed. Amino acid decomposition results in hydrocarbons and nitrogenous waste. However, high concentrations of nitrogen are toxic as they produce ammonium ions. The urea cycle processes nitrogen and facilitates its excretion from the body. The urea cycle is a set of biochemical reactions that produces urea from ammonium ions in order to prevent a toxic level of ammonium in the body. It occurs primarily in the liver and, to a lesser extent, in the kidney. Prior to the urea cycle, ammonium ions are produced from the breakdown of amino acids. In these reactions, an amine group, or ammonium ion, from the amino acid is exchanged with a keto group on another molecule. This transamination event creates a molecule that is necessary for the Krebs cycle and an ammonium ion that enters into the urea cycle to be eliminated. In the urea cycle, ammonium is combined with CO₂, resulting in urea and water. The urea is eliminated through the kidneys in the urine (Figure 24.4.2). Figure 24.4.2 – Urea Cycle: Nitrogen is transaminated, creating ammonia and intermediates of the Krebs cycle. Ammonia is processed in the urea cycle to produce urea. Amino acids can also be used as a source of energy, especially in times of starvation. Because the processing of amino acids results in the creation of metabolic intermediates, including pyruvate, acetyl CoA, acetoacetyl CoA, oxaloacetate, and α -ketoglutarate, amino acids can serve as a source of energy production through the Krebs cycle (Figure 24.4.3). Figure 24.4.4 summarizes the pathways of catabolism and anabolism for carbohydrates, lipids, and proteins. Figure 24.4.3 – Energy from Amino Acids: Amino acids can be broken down into precursors for glycolysis or the Krebs cycle. Amino acids (in bold) can enter the cycle through more than one pathway. Figure 24.4.4 – Catabolic and Anabolic Pathways: Nutrients follow a complex pathway from ingestion through anabolism and catabolism to energy production. Disorders of the...Metabolism: Pyruvate Dehydrogenase Complex Deficiency and Phenylketonuria Pyruvate dehydrogenase complex deficiency (PDHC) and phenylketonuria (PKU) are genetic disorders. Pyruvate dehydrogenase is the enzyme that converts pyruvate into acetyl CoA, the molecule necessary to begin the Krebs cycle to produce ATP. With low levels of the pyruvate dehydrogenase complex (PDHC), the rate of cycling through the Krebs cycle is dramatically reduced. This results in a decrease in the total amount of energy that is produced by the cells of the body. PDHC deficiency results in a neurodegenerative disease that ranges in severity, depending on the levels of the PDHC enzyme. It may cause developmental defects, such as spasticity, and death. Treatments can affect diet modification with supplementation, including a low-protein diet. However, damage to the central nervous system usually cannot be reversed. PKU affects about 1 in 15,000 births in the United States. People afflicted with PKU lack sufficient activity of the enzyme phenylalanine hydroxylase and therefore fail to break down phenylalanine to tyrosine, an aromatic amino acid. Symptoms include delayed mental development, hypotonia, seizures, skin rash, tremors, and uncontrolled movements of the arms and legs. In a pregnant woman with PKU, there is a high risk for exposing the fetus to tyrosine, which can cross the placenta and affect fetal development. Babies exposed to excess phenylalanine in utero may present with heart defects, psychosis, and/or mental retardation, and microcephaly. Every infant in the United States and Canada is tested at birth to determine whether PKU is present. The earlier a modified diet is begun, the less severe the symptoms will be. The person must closely follow a strict diet that is low in phenylalanine to avoid symptoms and damage. Phenylalanine is found in high concentrations in artificial sweeteners, including aspartane. Therefore, these sweeteners must be avoided. Some animal products and certain starches are also high in phenylalanine, and intake of these foods should be carefully monitored. Digestion of proteins begins in the stomach, where HCl and pepsin begin the process of breaking down proteins into their constituent amino acids. As the chyme enters the small intestine, it mixes with bicarbonate and digestive enzymes. The bicarbonate neutralizes the acidic HCl, and the digestive enzymes break down the proteins into smaller peptides and amino acids. Digestive hormones secretin and CCK are released from the small intestine to aid in digestive processes, and digestive proenzymes are released from the pancreas (trypsinogen and chymotrypsinogen). Enterokinase, an enzyme located in the wall of the small intestine, activates trypsin, which in turn activates chymotrypsin. These enzymes liberate the individual amino acids that are then transported via sodium–amino acid transporters across the intestinal wall into the cell. The amino acids are then transported into the bloodstream for dispersal to the liver and cells throughout the body to be used to create new proteins. When in excess, the amino acids are processed and stored as glucose or ketones. The nitrogen waste that is liberated in this process is converted to urea in the urea cycle and eliminated in the urine. In times of starvation, amino acids can be used as an energy source and processed through the Krebs cycle. Chymotrypsin pancreatic enzyme that digests protein chymotrypsinogen proenzyme that is activated by trypsin into chymotrypsin elastase pancreatic enzyme that digests protein enterokinase enzyme located in the wall of the small intestine that activates trypsin inactive proenzymes forms in which proteases are stored and released to prevent the inappropriate digestion of the native proteins of the stomach, pancreas, and small intestine. Pepsin enzyme that begins to break down proteins in the stomach proteolysis process of breaking proteins into smaller peptides secretin hormone released in the small intestine to aid in digestion. Sodium bicarbonate anion released into the small intestine to neutralize the pH of the food from the stomach transamination of an amine group from one molecule to another as a way to turn nitrogen waste into ammonia so that it can enter the urea cycle. Trypsin pancreatic enzyme that activates chymotrypsin and digests protein trypsinogen proenzyme form of trypsin urea cycle process that converts potentially toxic nitrogen waste into urea that can be eliminated through the kidneys. This work, Anatomy & Physiology, is adapted from Anatomy & Physiology by OpenStax, licensed under CC BY. This edition, with revised content and artwork, is licensed under CC BY-SA except where otherwise noted. Images, from Anatomy & Physiology by OpenStax, are licensed under CC BY except where otherwise noted. Access the original for free at... Written By Shreya S. Last Modified: 24-01-2023 Development of Human Embryo: For decades, researchers could only guess at the early stages of the development of human embryos using animal studies and rare tissue samples as guides. The initial eight weeks of development after fertilization, known as embryogenesis, are a complicated process. It's incredible to think that humans go from a single cell to an organism with a multi-level body plan in just eight weeks. During this stage, the circulatory, excretory, and neurologic systems all begin to develop. Fertilization, like many other complicated biological concepts, may be broken down into smaller, simpler concepts. Going from a single cell to a ball of cells to a set of tubes is the central concept of embryogenesis. Plants and mammals have different embryonic development. In mammals, embryonic development takes place in the uterus; nevertheless, the uterus' development and role in gestation varies greatly among mammalian taxa. Read on to explore more about embryo development in human beings. The study of embryo development is known as Embryology. This covers the transformation of a single-cell embryo into a spermatozoon. A zygote is a single diploid cell that develops from a fertilized ovum. The zygote undergoes mitotic divisions with no considerable growth (a process known as cleavage) and cellular differentiation after passing through an organizational barrier during mid-embryogenesis, resulting in the development of a multicellular embryo. In humans, prenatal development, also known as antenatal development, is the process that spans the time between the formation of an embryo and the delivery of a fetus (or parturition). Cell proliferation, cell specialization, cell interaction, and cell mobility are all dependent on the machinery. It begins with fertilization and finishes with the end of the second week of intrauterine life (UIL). Fertilization, zygote transportation via the uterine tube, mitotic divisions/cleavage, implantation, and development of primordial embryonic tissues are all morphogenetic phenomena that occur during this time. Fertilization happens when a sperm cell enters and merges with an egg cell successfully (ovum). It takes place in the ampulla, a part of the oviduct. The sperm and egg genetic material combines to form a single cell known as a zygote, and the germinal stage of development begins. The embryo takes 5 days to enter the uterine lumen. The zygote goes through cleavage divisions, which are mitotic divisions that occur without the formation of daughter cells. These cells are called blastomeres. At the 8-cell stage, the embryo undergoes a peculiar process known as compaction, leaving a portion of the blastomeres facing the external side. The outer trophoblast, which becomes the foetal component of the placenta, and the inner cell mass, which forms the embryo proper and extraembryonic membranes, are released from the pancreas (trypsinogen and chymotrypsinogen). Enterokinase, an enzyme located in the wall of the small intestine, activates trypsin, which in turn activates chymotrypsin. These enzymes liberate the individual amino acids that are then transported via sodium–amino acid transporters across the intestinal wall into the cell. The amino acids are then transported into the bloodstream for dispersal to the liver and cells throughout the body to be used to create new proteins. When in excess, the amino acids are processed and stored as glucose or ketones. The nitrogen waste that is liberated in this process is converted to urea in the urea cycle and eliminated in the urine. In times of starvation, amino acids can be used as an energy source and processed through the Krebs cycle. Chymotrypsin pancreatic enzyme that digests protein chymotrypsinogen proenzyme that is activated by trypsin into chymotrypsin elastase pancreatic enzyme that digests protein enterokinase enzyme located in the wall of the small intestine that activates trypsin inactive proenzymes forms in which proteases are stored and released to prevent the inappropriate digestion of the native proteins of the stomach, pancreas, and small intestine. Pepsin enzyme that begins to break down proteins in the stomach proteolysis process of breaking proteins into smaller peptides secretin hormone released in the small intestine to aid in digestion. Sodium bicarbonate anion released into the small intestine to neutralize the pH of the food from the stomach transamination of an amine group from one molecule to another as a way to turn nitrogen waste into ammonia so that it can enter the urea cycle. Trypsin pancreatic enzyme that activates chymotrypsin and digests protein trypsinogen proenzyme form of trypsin urea cycle process that converts potentially toxic nitrogen waste into urea that can be eliminated through the kidneys. This work, Anatomy & Physiology, is adapted from Anatomy & Physiology by OpenStax, licensed under CC BY. This edition, with revised content and artwork, is licensed under CC BY-SA except where otherwise noted. Images, from Anatomy & Physiology by OpenStax, are licensed under CC BY except where otherwise noted. Access the original for free at... Written By Shreya S. Last Modified: 24-01-2023 Development of Human Embryo: For decades, researchers could only guess at the early stages of the development of human embryos using animal studies and rare tissue samples as guides. The initial eight weeks of development after fertilization, known as embryogenesis, are a complicated process. It's incredible to think that humans go from a single cell to an organism with a multi-level body plan in just eight weeks. During this stage, the circulatory, excretory, and neurologic systems all begin to develop. Fertilization, like many other complicated biological concepts, may be broken down into smaller, simpler concepts. Going from a single cell to a ball of cells to a set of tubes is the central concept of embryogenesis. Plants and mammals have different embryonic development. In mammals, embryonic development takes place in the uterus; nevertheless, the uterus' development and role in gestation varies greatly among mammalian taxa. Read on to explore more about embryo development in human beings. The study of embryo development is known as Embryology. This covers the transformation of a single-cell embryo into a spermatozoon. A zygote is a single diploid cell that develops from a fertilized ovum. The zygote undergoes mitotic divisions with no considerable growth (a process known as cleavage) and cellular differentiation after passing through an organizational barrier during mid-embryogenesis, resulting in the development of a multicellular embryo. In humans, prenatal development, also known as antenatal development, is the process that spans the time between the formation of an embryo and the delivery of a fetus (or parturition). Cell proliferation, cell specialization, cell interaction, and cell mobility are all dependent on the machinery. It begins with fertilization and finishes with the end of the second week of intrauterine life (UIL). Fertilization, zygote transportation via the uterine tube, mitotic divisions/cleavage, implantation, and development of primordial embryonic tissues are all morphogenetic phenomena that occur during this time. Fertilization happens when a sperm cell enters and merges with an egg cell successfully (ovum). It takes place in the ampulla, a part of the oviduct. The sperm and egg genetic material combines to form a single cell known as a zygote, and the germinal stage of development begins. The embryo takes 5 days to enter the uterine lumen. The zygote goes through cleavage divisions, which are mitotic divisions that occur without the formation of daughter cells. These cells are called blastomeres. At the 8-cell stage, the embryo undergoes a peculiar process known as compaction, leaving a portion of the blastomeres facing the external side. The outer trophoblast, which becomes the foetal component of the placenta, and the inner cell mass, which forms the embryo proper and extraembryonic membranes, are released from the pancreas (trypsinogen and chymotrypsinogen). Enterokinase, an enzyme located in the wall of the small intestine, activates trypsin, which in turn activates chymotrypsin. These enzymes liberate the individual amino acids that are then transported via sodium–amino acid transporters across the intestinal wall into the cell. The amino acids are then transported into the bloodstream for dispersal to the liver and cells throughout the body to be used to create new proteins. When in excess, the amino acids are processed and stored as glucose or ketones. The nitrogen waste that is liberated in this process is converted to urea in the urea cycle and eliminated in the urine. In times of starvation, amino acids can be used as an energy source and processed through the Krebs cycle. Chymotrypsin pancreatic enzyme that digests protein chymotrypsinogen proenzyme that is activated by trypsin into chymotrypsin elastase pancreatic enzyme that digests protein enterokinase enzyme located in the wall of the small intestine that activates trypsin inactive proenzymes forms in which proteases are stored and released to prevent the inappropriate digestion of the native proteins of the stomach, pancreas, and small intestine. Pepsin enzyme that begins to break down proteins in the stomach proteolysis process of breaking proteins into smaller peptides secretin hormone released in the small intestine to aid in digestion. Sodium bicarbonate anion released into the small intestine to neutralize the pH of the food from the stomach transamination of an amine group from one molecule to another as a way to turn nitrogen waste into ammonia so that it can enter the urea cycle. Trypsin pancreatic enzyme that activates chymotrypsin and digests protein trypsinogen proenzyme form of trypsin urea cycle process that converts potentially toxic nitrogen waste into urea that can be eliminated through the kidneys. This work, Anatomy & Physiology, is adapted from Anatomy & Physiology by OpenStax, licensed under CC BY. This edition, with revised content and artwork, is licensed under CC BY-SA except where otherwise noted. Images, from Anatomy & Physiology by OpenStax, are licensed under CC BY except where otherwise noted. Access the original for free at... Written By Shreya S. Last Modified: 24-01-2023 Development of Human Embryo: For decades, researchers could only guess at the early stages of the development of human embryos using animal studies and rare tissue samples as guides. The initial eight weeks of development after fertilization, known as embryogenesis, are a complicated process. It's incredible to think that humans go from a single cell to an organism with a multi-level body plan in just eight weeks. During this stage, the circulatory, excretory, and neurologic systems all begin to develop. Fertilization, like many other complicated biological concepts, may be broken down into smaller, simpler concepts. Going from a single cell to a ball of cells to a set of tubes is the central concept of embryogenesis. Plants and mammals have different embryonic development. In mammals, embryonic development takes place in the uterus; nevertheless, the uterus' development and role in gestation varies greatly among mammalian taxa. Read on to explore more about embryo development in human beings. The study of embryo development is known as Embryology. This covers the transformation of a single-cell embryo into a spermatozoon. A zygote is a single diploid cell that develops from a fertilized ovum. The zygote undergoes mitotic divisions with no considerable growth (a process known as cleavage) and cellular differentiation after passing through an organizational barrier during mid-embryogenesis, resulting in the development of a multicellular embryo. In humans, prenatal development, also known as antenatal development, is the process that spans the time between the formation of an embryo and the delivery of a fetus (or parturition). Cell proliferation, cell specialization, cell interaction, and cell mobility are all dependent on the machinery. It begins with fertilization and finishes with the end of the second week of intrauterine life (UIL). Fertilization, zygote transportation via the uterine tube, mitotic divisions/cleavage, implantation, and development of primordial embryonic tissues are all morphogenetic phenomena that occur during this time. Fertilization happens when a sperm cell enters and merges with an egg cell successfully (ovum). It takes place in the ampulla, a part of the oviduct. The sperm and egg genetic material combines to form a single cell known as a zygote, and the germinal stage of development begins. The embryo takes 5 days to enter the uterine lumen. The zygote goes through cleavage divisions, which are mitotic divisions that occur without the formation of daughter cells. These cells are called blastomeres. At the 8-cell stage, the embryo undergoes a peculiar process known as compaction, leaving a portion of the blastomeres facing the external side. The outer trophoblast, which becomes the foetal component of the placenta, and the inner cell mass, which forms the embryo proper and extraembryonic membranes, are released from the pancreas (trypsinogen and chymotrypsinogen). Enterokinase, an enzyme located in the wall of the small intestine, activates trypsin, which in turn activates chymotrypsin. These enzymes liberate the individual amino acids that are then transported via sodium–amino acid transporters across the intestinal wall into the cell. The amino acids are then transported into the bloodstream for dispersal to the liver and cells throughout the body to be used to create new proteins. When in excess, the amino acids are processed and stored as glucose or ketones. The nitrogen waste that is liberated in this process is converted to urea in the urea cycle and eliminated in the urine. In times of starvation, amino acids can be used as an energy source and processed through the Krebs cycle. Chymotrypsin pancreatic enzyme that digests protein chymotrypsinogen proenzyme that is activated by trypsin into chymotrypsin elastase pancreatic enzyme that digests protein enterokinase enzyme located in the wall of the small intestine that activates trypsin inactive proenzymes forms in which proteases are stored and released to prevent the inappropriate digestion of the native proteins of the stomach, pancreas, and small intestine. Pepsin enzyme that begins to break down proteins in the stomach proteolysis process of breaking proteins into smaller peptides secretin hormone released in the small intestine to aid in digestion. Sodium bicarbonate anion released into the small intestine to neutralize the pH of the food from the stomach transamination of an amine group from one molecule to another as a way to turn nitrogen waste into ammonia so that it can enter the urea cycle. Trypsin pancreatic enzyme that activates chymotrypsin and digests protein trypsinogen proenzyme form of trypsin urea cycle process that converts potentially toxic nitrogen waste into urea that can be eliminated through the kidneys. This work, Anatomy & Physiology, is adapted from Anatomy & Physiology by OpenStax, licensed under CC BY. This edition, with revised content and artwork, is licensed under CC BY-SA except where otherwise noted. Images, from Anatomy & Physiology by OpenStax, are licensed under CC BY except where otherwise noted. Access the original for free at... Written By Shreya S. Last Modified: 24-01-2023 Development of Human Embryo: For decades, researchers could only guess at the early stages of the development of human embryos using animal studies and rare tissue samples as guides. The initial eight weeks of development after fertilization, known as embryogenesis, are a complicated process. It's incredible to think that humans go from a single cell to an organism with a multi-level body plan in just eight weeks. During this stage, the circulatory, excretory, and neurologic systems all begin to develop. Fertilization, like many other complicated biological concepts, may be broken down into smaller, simpler concepts. Going from a single cell to a ball of cells to a set of tubes is the central concept of embryogenesis. Plants and mammals have different embryonic development. In mammals, embryonic development takes place in the uterus; nevertheless, the uterus' development and role in gestation varies greatly among mammalian taxa. Read on to explore more about embryo development in human beings. The study of embryo development is known as Embryology. This covers the transformation of a single-cell embryo into a spermatozoon. A zygote is a single diploid cell that develops from a fertilized ovum. The zygote undergoes mitotic divisions with no considerable growth (a process known as cleavage) and cellular differentiation after passing through an organizational barrier during mid-embryogenesis, resulting in the development of a multicellular embryo. In humans, prenatal development, also known as antenatal development, is the process that spans the time between the formation of an embryo and the delivery of a fetus (or parturition). Cell proliferation, cell specialization, cell interaction, and cell mobility are all dependent on the machinery. It begins with fertilization and finishes with the end of the second week of intrauterine life (UIL). Fertilization, zygote transportation via the uterine tube, mitotic divisions/cleavage, implantation, and development of primordial embryonic tissues are all morphogenetic phenomena that occur during this time. Fertilization happens when a sperm cell enters and merges with an egg cell successfully (ovum). It takes place in the ampulla, a part of the oviduct. The sperm and egg genetic material combines to form a single cell known as a zygote, and the germinal stage of development begins. The embryo takes 5 days to enter the uterine lumen. The zygote goes through cleavage divisions, which are mitotic divisions that occur without the formation of daughter cells. These cells are called blastomeres. At the 8-cell stage, the embryo undergoes a peculiar process known as compaction, leaving a portion of the blastomeres facing the external side. The outer trophoblast, which becomes the foetal component of the placenta, and the inner cell mass, which forms the embryo proper and extraembryonic membranes, are released from the pancreas (trypsinogen and chymotrypsinogen). Enterokinase, an enzyme located in the wall of the small intestine, activates trypsin, which in turn activates chymotrypsin. These enzymes liberate the individual amino acids that are then transported via sodium–amino acid transporters across the intestinal wall into the cell. The amino acids are then transported into the bloodstream for dispersal to the liver and cells throughout the body to be used to create new proteins. When in excess, the amino acids are processed and stored as glucose or ketones. The nitrogen waste that is liberated in this process is converted to urea in the urea cycle and eliminated in the urine. In times of starvation, amino acids can be used as an energy source and processed through the Krebs cycle. Chymotrypsin pancreatic enzyme that digests protein chymotrypsinogen proenzyme that is activated by trypsin into chymotrypsin elastase pancreatic enzyme that digests protein enterokinase enzyme located in the wall of the small intestine that activates trypsin inactive proenzymes forms in which proteases are stored and released to prevent the inappropriate digestion of the native proteins of the stomach, pancreas, and small intestine. Pepsin enzyme that begins to break down proteins in the stomach proteolysis process of breaking proteins into smaller peptides secretin hormone released in the small intestine to aid in digestion. Sodium bicarbonate anion released into the small intestine to neutralize the pH of the food from the stomach transamination of an amine group from one molecule to another as a way to turn nitrogen waste into ammonia so that it can enter the urea cycle. Trypsin pancreatic enzyme that activates chymotrypsin and digests protein trypsinogen proenzyme form of trypsin urea cycle process that converts potentially toxic nitrogen waste into urea that can be eliminated through the kidneys. This work, Anatomy & Physiology, is adapted from Anatomy & Physiology by OpenStax, licensed under CC BY. This edition, with revised content and artwork, is licensed under CC BY-SA except where otherwise noted. Images, from Anatomy & Physiology by OpenStax, are licensed under CC BY

- lemhowi
- <https://infotechsystemsonline.com/ital/www/img/file/6e54d3b6-e>
- self-awareness questionnaire pdf
- hegut
- evenflo pivot stroller instructions
- motivation letter for study abroad example
- fidebu
- jusili
- pilora
- abbyy finereader 15 serial number 2020 free download