

Click to prove
you're human

Illustrated dictionary of maths

A symbol for a value we don't know yet. It is usually a letter like x or y . Example: in $x + 2 = 6$, x is the variable. Why "variable" when it may have just one value? In the case of $x + 2 = 6$ we can solve it to find that $x = 4$. But in something like $y = x + 2$ (a linear equation) x can have many values. In general it is much easier to always call it a variable even though in some cases it is a single value. © 1996-2014, Amazon.com, Inc. or its affiliates. The store will not work correctly in the case when cookies are disabled. Skip to Content. This event ends in You've added: Usborne Illustrated Dictionary of Maths RRP: £9.99 A point where two or more line segments or edges meet. A corner. Examples: • any corner of a pentagon (a plane shape) • any corner of a tetrahedron (a solid) (The plural of vertex is "vertices".) The result of adding two or more numbers. Example: 5 is the sum of 2 , 4 and 3 (because $2 + 4 + 3 = 9$). Draw the numerals to the two blue boxes to show them. The result of subtracting one number from another. How much one number differs from another. Example: The difference between 8 and 3 is 5 . Symbols and operations (such as $-$ and \times) grouped together that show the value of something. Example: $2 - 3$ is an expression. 2×2 is also an expression. Not all expressions do not have an equals sign. In fact, most of these: $=$, \neq , $<$, $>$, \leq , \geq © 1996-2014, Amazon.com, Inc. or its affiliates. The store will not work correctly in the case when cookies are disabled. Skip to Content. This event ends in You've added: Usborne Illustrated Dictionary of Maths RRP: £9.99 Easy-to-understand definitions, with illustrations and links to further reading. From the definitions, simple letters begin. Search above: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 1264 Definitions 1194 Illustrated, 269 Animated Copyright © 2025 Rod Pierce Terms whose variables (such as x or y) with their exponents (such as the 2 in x^2) are the same. Examples: $7x$ and $2x$ are like terms because they are both " x ". $3x^2$ and $-2x^2$ are like terms because they are both " x^2 ". But $7x$ and $7x^2$ are NOT like terms. (the exponents are different), they are unlike terms. Like terms can be added together. Ask the publishers to restore access to 500,000+ books. An equation says that two things are equal. It will have an equals sign " $=$ " like this: $7 + 2 = 10 - 1$ That equation says: what is on the left ($7 + 2$) is equal to what is on the right ($10 - 1$). So an equation is like a statement "this equals that". Here is another equation: A number with no fractional part (no decimals). Includes: • the counting numbers ($1, 2, 3, \dots$), • zero (0), • and the negative of the counting numbers ($-1, -2, -3, \dots$). We can write them all down like this: $\dots, -3, -2, -1, 0, 1, 2, 3, \dots$ Examples of integers: -16, -3, 0, 1, 198 Try it yourself: Ask the publishers to restore access to 500,000+ books. © 1996-2014, Amazon.com, Inc. or its affiliates. It looks like you're offline. Overview View 4 Editions Details Reviews Lists Related Books February 28, 2023 Edited by ImportBot import existing book February 10, 2023 Edited by BWBImportBot Modified local IDs: source records December 5, 2022 Edited by ImportBot import existing book December 5, 2022 Edited by ImportBot import existing book February 18, 2009 Created by ImportBot Imported from San Francisco Public Library record