

I'm not a bot

The Euler-Lagrange differential equation is the fundamental equation of calculus of variations. It states that if is defined by an integral of the form where then has a stationary value if the Euler-Lagrange differential equation is satisfied. If time-derivative notation is replaced instead by space-derivative notation, the equation becomes The Euler-Lagrange differential equation is implemented as `EulerEquations[f, u[x], x]` in the Wolfram Language package `VariationalMethods``. In many physical problems, (the partial derivative of with respect to) turns out to be 0, in which case a manipulation of the Euler-Lagrange differential equation reduces to the greatly simplified and partially integrated form known as the Beltrami identity. For three independent variables (Arfken 1985, pp. 924-944), the equation generalizes to Problems in the calculus of variations often can be solved by solution of the appropriate Euler-Lagrange equation. To derive the Euler-Lagrange differential equation, examine since . Now, integrate the second term by parts using `Integrate[#, x]` and `D[#, x]` then gives But we are varying the path only, not the endpoints, so and (14) becomes We are finding the stationary values such that . These must vanish for any small change , which gives from (15), This is the Euler-Lagrange differential equation. The variation in can also be written in terms of the parameter as where and the first, second, etc., variations are The second variation can be re-expressed using `But` Now choose such that and such that satisfies It then follows that Beltrami Identity, Brachistochrone Problem, Calculus of Variations, Euler-Lagrange Derivative, Functional Derivative, Variation Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, 1985. Forsyth, A.R. Calculus of Variations. New York: Dover, pp. 17-20 and 29, 1960. Goldstein, H. Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, p. 44, 1980. Lanczos, C. The Variational Principles of Mechanics, 4th ed. New York: Dover, pp. 53 and 61, 1986. Morse, P.M. and Feshbach, H. "The Variational Integral and the Euler Equations." 3.1 in Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 276-280, 1953. Euler-Lagrange Differential Equation." From MathWorld--A Wolfram Web Resource. Subject classifications This video was produced by TheKazeFFet(^{1}). The derivation begins by expressing the problem (which is to find the minimum value of a functional $\langle S(q_j(x), q_j(x), x) \rangle$) in the language of single-variable calculus meaning, well want to express the functional $\langle S(q_j(x), q_j(x), x) \rangle$ as a function of the single variable $\langle \rangle$ (which will describe later) so that we can use the techniques of single-variable calculus to find the minimum value of $\langle S \rangle$ which occurs when $\langle \frac{d}{dS} \{d\} \langle S \rangle \rangle = 0$. Later on, well deal with the more general case in which we solve for the stationary points of $\langle S \rangle$. Let the set of coordinates $\langle q_j(x) \rangle$ be generalized coordinates which are dependent variables of the independent variable $\langle x \rangle$. Let the quantity $\langle S \rangle$ be a parametric quantity whose magnitude is equal to the length of the curve $\langle c \rangle$ where $\langle c \rangle$ can be any arbitrary curve. (This length specifies the magnitude of our parametric quantity which is not limited to being just physical length but can also be an action, a period of time, and so on.) Let the two coordinates $\langle (q_j(x_1), x_1) \rangle$ and $\langle (q_j(x_2), x_2) \rangle$ denote the initial and final coordinate values associated with a system, respectively. In many physics problems, these coordinate values are typically taken to denote one time coordinate (in which case we replace the independent variable $\langle x \rangle$ with $\langle t \rangle$) and the rest of the coordinates are typically taken to denote whichever spatial coordinates are the most convenient for a given problem. In geometrical problems the generalized coordinates are, of course, taken to be all spatial coordinates. The choice of what kinds of generalized coordinates to use really just depends on the problem you're trying to solve. Well let $\langle S \rangle$ be any parametric quantity associated with a system going from $\langle (q_j(x_1), x_1) \rangle$ to $\langle (q_j(x_2), x_2) \rangle$, even those which are not minimized. Now, the whole purpose of this section will be to find the minimum value of $\langle S \rangle$ those points in which the parametric quantity does not change with respect to the variables it depends on. But to do this, we must first write an expression which determines the length $\langle S \rangle$ of any arbitrary curve $\langle c \rangle$. How does one calculate the magnitude $\langle S \rangle$? To do this, lets divide the curve $\langle c \rangle$ into infinitely many, infinitesimally small line segments of length $\langle ds \rangle$. By taking the infinite sum (which is to say, by taking the integral) of all these small lengths of $\langle ds \rangle$, we can find that magnitude of $\langle S \rangle$ is given by $\langle S = \int \{dS\} \rangle$. Equation (1) is nice and all, but we should express it in terms of something which can be calculated in terms of the independent variable $\langle x \rangle$. As a first steps towards doing this, we can rewriting the length $\langle ds \rangle$ using the Pythagorean Theorem to obtain $\langle ds = \sqrt{dx^2 + dq_j^2} \rangle$. Lets substitute this equation into Equation (1) to get $\langle S = \int \{ \sqrt{dx^2 + dq_j^2} \} \rangle$. I have written the question mark in the limits of integration to denote that Im leaving them out for the moment. Using algebraic manipulations, we can express the integral with respect to the independent variable $\langle x \rangle$ to obtain $\langle S(q_j, q_j, x) = \int \{ x_1 \}^{\{ x_2 \}} \sqrt{1 + \frac{dq_j}{dx}} dx = \int \{ x_1 \}^{\{ x_2 \}} L(q_j, q_j, x) dx$. where the integrand is some functional of $\langle q_j(x) \rangle$, $\langle q_j(x) \rangle$ and $\langle x \rangle$ and is denoted by $\langle F(q_j(x), q_j(x), x) \rangle$. (A functional is something which is a function of a function.) To find the minimum of $\langle q_j(x) \rangle$ would involve a procedure which you are already familiar with: the minimum occurs at the point where $\langle q_j(x) \rangle$ will not change (up to the first order($\langle 2 \rangle$) with small changes in $\langle x \rangle$; or, written in another way, where $\langle \frac{d}{dx} \{dq_j(x)\} dx = 0 \rangle$. Finding the minimum value of $\langle S \rangle$ is not quite so simple. The minimum value of $\langle S \rangle$ corresponds to a point where $\langle S \rangle$ does not change, up to the first order, with small changes in $\langle q_j \rangle$, $\langle q_j \rangle$ and $\langle x \rangle$. To find this minimum, we must use a technique known as calculus of variations: this basically, a procedure in which we use clever techniques to express $\langle S \rangle$ as a function of a single independent variable so that we can use the techniques of single-variable calculus in order to find its minimum value. The first step necessary to accomplish this goal will be to assume that there is a curve $\langle \bar{q}_j(x) \rangle$ which is that particular curve whose arc length $\langle S(\bar{q}_j(x), \bar{q}_j(x), x) \rangle$ is minimized. As previously mentioned, we shall let $\langle q_j(x) \rangle$ represent any curve between $\langle q_j(x_1) \rangle$ and $\langle q_j(x_2) \rangle$ so long that it is everywhere smooth and continuous. We shall, however, require the two constraints that $\langle \bar{q}_j(x_1) = q_j(x_1) \rangle$ and $\langle \bar{q}_j(x_2) = q_j(x_2) \rangle$. We shall now refine a new function $\langle \bar{\eta}(x) \rangle$ which we will let be any smooth curve such that $\langle \bar{\eta}(x_1) = 0 \rangle$ and $\langle \bar{\eta}(x_2) = 0 \rangle$. Lets also define a parameter which we'll call $\langle \bar{\epsilon} \rangle$ which we shall let be defined by the equation $\langle \bar{q}_j(x) = \bar{q}_j(x) + \bar{\epsilon} \bar{\eta}(x) \rangle$. The product $\langle \bar{\epsilon} \bar{\eta}(x) \rangle$ is the error between the correct path $\langle \bar{q}_j(x) \rangle$ (the one whose arc length is minimized) and the arbitrarily chosen path $\langle q_j(x) \rangle$. By simply letting $\langle \bar{\eta}(x) \rangle$ be a particular function (pick any you like; I have chosen the one illustrated in Figure #), so long as it satisfies the aforementioned constraints, then we can vary $\langle q_j \rangle$ with the single parameter $\langle \bar{\epsilon} \rangle$ and write $\langle q_j(\bar{\epsilon}) \rangle$. The previous sentence, for the purpose of comprehensibility, requires a little explanation. For the two fixed initial conditions $\langle q_j(x_1), x_1 \rangle$ and $\langle q_j(x_2), x_2 \rangle$, the function $\langle q_j(x) \rangle$ does not vary with the two functions $\langle \bar{q}_j(x) \rangle$ and $\langle \bar{\eta}(x) \rangle$. The reason why $\langle q_j(x) \rangle$ does not vary with $\langle \bar{q}_j(x) \rangle$ is because $\langle \bar{q}_j(x) \rangle$ will not change regardless of what $\langle q_j(x) \rangle$ is ($\bar{q}_j(x)$ depends upon only the initial conditions $\langle q_j(x_1), x_1 \rangle$ and $\langle q_j(x_2), x_2 \rangle$ being different. Basically, it would be very easy to see visually, on a graph, that by choosing two different initial conditions, the shortest path $\langle \bar{q}_j(x) \rangle$ connecting those two points will also have to be different. Figure 1 (click to expand) Lastly, since we let $\langle \bar{\eta}(x) \rangle$ be a particular function, it follows that it also only depends on the initial conditions. (As you move the two points $\langle q_j(x_1), x_1 \rangle$ and $\langle q_j(x_2), x_2 \rangle$ apart or towards each other, you could imagine $\langle \bar{\eta}(x) \rangle$ having to elongate or contract.) It follows that $\langle q_j(x) \rangle$ is, therefore, not a function of $\langle \bar{\eta}(x) \rangle$. I have shown in Figure 1 how $\langle \bar{\eta}(x) \rangle$ (due to the way in which we defined it by Equation (1)) varies with $\langle x \rangle$ in such a way that by adding $\langle \bar{\epsilon} \bar{\eta}(x) \rangle$ to the "correct function" $\langle \bar{q}_j(x) \rangle$, we always manage to land on $\langle q_j(x) \rangle$. Now, $\langle q_j(x) \rangle$ represents "any" arbitrary curve; indeed, we could change $\langle q_j(x) \rangle$ to whatever we wanted and $\langle \bar{\epsilon} \bar{\eta}(x) \rangle$ would still satisfy Equation (1). In other words, we could just add a different function $\langle \bar{\epsilon} \bar{\eta}(x) \rangle$ (where $\langle \bar{\epsilon} \bar{\eta}(x) \rangle$ changed a little but $\langle \bar{\eta}(x) \rangle$ did not) to $\langle \bar{q}_j(x) \rangle$ and land on $\langle q_j(x) \rangle$ again as in Figure 1. What all of this means is that the only thing which $\langle q_j(x) \rangle$ depends on in Equation (1) is $\langle \bar{\epsilon} \bar{\eta}(x) \rangle$; therefore, we can write $\langle S(q_j, q_j, x) = \bar{q}_j + \bar{\epsilon} \bar{\eta}(x) \rangle$. By taking the derivative with respect to $\langle x \rangle$ on both sides, we get $\langle \frac{d}{dx} \langle S(q_j, q_j, x) \rangle = \bar{q}_j' + \bar{\epsilon} \bar{\eta}'(x) \rangle$. At this point, we are now able to express the functional $\langle S(q_j, q_j, x) \rangle$ as the function $\langle S(\bar{q}_j, \bar{\eta}(x)) \rangle$. The minimum value of $\langle S \rangle$ occurs at a point where $\langle \frac{d}{dx} \langle S \rangle \rangle = 0 \rangle$. In order to investigate the mathematical relationships which satisfy this condition (the condition that $\langle S \rangle$ is minimized), lets differentiate both sides of Equation (3), set it equal to zero, and then proceed to use algebra to find mathematical relationships which satisfy this condition. Starting with the first step, we have $\langle \frac{d}{dx} \langle S \rangle \rangle = \int \{ x_1 \}^{\{ x_2 \}} \frac{d}{dx} [L(\bar{q}_j, \bar{\eta}(x), x)] dx = 0 \rangle$. (To clarify any potential confusion, I took the partial derivative $\langle \frac{\partial}{\partial x} \rangle$ on both sides; since the function $\langle S \rangle$ on the left-hand side is a single-variable function, it follows that $\langle \frac{\partial}{\partial x} \langle S \rangle \rangle = \frac{d}{dx} \langle S \rangle$.) Since $\langle L(\bar{q}_j, \bar{\eta}(x), x) \rangle$ is a functional, in order to evaluate the partial derivative $\langle \frac{\partial}{\partial x} \langle L(\bar{q}_j, \bar{\eta}(x), x) \rangle \rangle$, we must use the chain rule to get $\langle \frac{\partial}{\partial x} \langle S \rangle \rangle = \int \{ x_1 \}^{\{ x_2 \}} \biggl[\frac{\partial}{\partial x} [L(\bar{q}_j, \bar{\eta}(x), x)] \biggr] dx \rangle$. tag{8} = 0. Lets evaluate the partial derivatives $\langle \frac{\partial}{\partial x} \langle L(\bar{q}_j, \bar{\eta}(x), x) \rangle \rangle$ and $\langle \frac{\partial}{\partial x} \langle \bar{q}_j \rangle \rangle$ to get $\langle \frac{\partial}{\partial x} \langle \bar{q}_j \rangle \rangle = \bar{\eta}(x) \rangle$. tag{9} = $\frac{\partial}{\partial x} \langle \bar{\eta}(x) \rangle = \bar{\eta}'(x) \rangle$. tag{10} = $\frac{\partial}{\partial x} \langle L(\bar{q}_j, \bar{\eta}(x), x) \rangle = \bar{q}_j' + \bar{\eta}'(x) \rangle$. tag{11} = $\frac{\partial}{\partial x} \langle S \rangle \rangle = \bar{q}_j' + \bar{\eta}'(x) \rangle$. tag{12} = $\frac{\partial}{\partial x} \langle S \rangle \rangle = 0$. tag{13} = $\bar{q}_j' + \bar{\eta}'(x) = 0$. tag{14} = $\bar{q}_j' = -\bar{\eta}'(x)$. tag{15} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{16} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{17} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{18} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{19} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{20} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{21} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{22} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{23} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{24} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{25} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{26} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{27} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{28} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{29} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{30} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{31} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{32} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{33} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{34} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{35} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{36} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{37} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{38} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{39} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{40} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{41} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{42} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{43} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{44} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{45} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{46} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{47} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{48} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{49} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{50} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{51} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{52} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{53} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{54} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{55} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{56} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{57} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{58} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{59} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{60} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{61} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{62} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{63} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{64} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{65} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{66} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{67} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{68} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{69} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{70} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{71} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{72} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{73} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{74} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{75} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{76} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{77} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{78} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{79} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{80} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{81} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{82} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{83} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{84} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{85} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{86} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{87} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{88} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{89} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{90} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{91} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{92} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{93} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}} \bar{\eta}(x) dx$. tag{94} = $\bar{q}_j = -\int \{ x_1 \}^{\{ x_2 \}}$

Euler lagrange differential equation. Derive the euler lagrange differential equation. Derive euler lagrange equation from hamilton principle. Euler lagrange equation derivation in classical mechanics. Derive wonderwall equation. Euler lagrange derivation. Euler lagrange equation example.