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The	Euler-Lagrange	differential	equation	is	the	fundamental	equation	of	calculus	of	variations.	It	states	that	if	is	defined	by	an	integral	of	the	formwherethen	has	a	stationary	value	if	the	Euler-Lagrange	differential	equationis	satisfied.If	time-derivative	notation	is	replaced	instead	by	space-derivative	notation	,	the	equation	becomesThe	Euler-Lagrange
differential	equation	is	implemented	as	EulerEquations[f,	u[x],	x]	in	the	Wolfram	Language	package	VariationalMethods`	.In	many	physical	problems,	(the	partial	derivative	of	with	respect	to	)	turns	out	to	be	0,	in	which	case	a	manipulation	of	the	Euler-Lagrange	differential	equation	reduces	to	the	greatly	simplified	and	partially	integrated	form
known	as	the	Beltrami	identity,For	three	independent	variables	(Arfken	1985,	pp.924-944),	the	equation	generalizes	toProblems	in	the	calculus	of	variations	oftencan	be	solved	by	solution	of	the	appropriate	Euler-Lagrange	equation.To	derive	the	Euler-Lagrange	differential	equation,	examine	since	.	Now,	integrate	the	second	term	by	parts	using
soCombining	()	and	()	then	givesBut	we	are	varying	the	path	only,	not	the	endpoints,	so	and	(14)	becomesWe	are	finding	the	stationary	values	such	that	.	These	must	vanish	for	any	small	change	,	which	gives	from	(15),This	is	the	Euler-Lagrange	differential	equation.The	variation	in	can	also	be	written	in	terms	of	the	parameter	as	where	and	the	first,
second,	etc.,	variations	are	The	second	variation	can	be	re-expressed	usingsoButNow	choose	such	thatand	such	thatso	that	satisfiesIt	then	follows	that	Beltrami	Identity,	Brachistochrone	Problem,	Calculus	of	Variations,	Euler-Lagrange	Derivative,	Functional	Derivative,	Variation	Arfken,	G.	Mathematical	Methods	for	Physicists,	3rd	ed.	Orlando,	FL:
Academic	Press,	1985.Forsyth,	A.R.	Calculus	of	Variations.	New	York:	Dover,	pp.17-20	and	29,	1960.Goldstein,	H.	Classical	Mechanics,	2nd	ed.	Reading,	MA:	Addison-Wesley,	p.44,	1980.Lanczos,	C.	The	Variational	Principles	of	Mechanics,	4th	ed.	New	York:	Dover,	pp.53	and	61,	1986.Morse,	P.M.	and	Feshbach,	H.	"The	Variational	Integral	and	the
Euler	Equations."	3.1	in	Methods	of	Theoretical	Physics,	Part	I.	New	York:	McGraw-Hill,	pp.276-280,	1953.Euler-Lagrange	Differential	Equation	Weisstein,	Eric	W.	"Euler-Lagrange	Differential	Equation."	From	MathWorld--A	Wolfram	Web	Resource.	Subject	classifications	This	video	was	produced	by	The	Kaizen	Effect\(^{[1]}\).	The	derivation	begins
by	expressing	the	problem	(which	is	to	find	the	minimum	value	of	a	functional	\(S(q_j(x),q_j(x),x)\))in	the	language	of	single-variable	calculusmeaning,	well	want	to	express	the	functional	\(S(q_j(x),q_j(x),x)\)	as	a	function	of	the	single	variable	\(\)	(which	Ill	describe	later)	so	that	we	can	use	the	techniques	of	single-variable	calculus	to	find	the	minimum
value	of	\(S()\)	which	occurs	when	\(\frac{d}{d}(S())=0\).	Later	on,	well	deal	with	the	more	general	case	in	which	we	solve	for	the	stationary	points	of	\(S()\).	Let	the	set	of	coordinates	\(q_j(x)\)	be	generalized	coordinates	which	are	dependent	variables	of	the	independent	variable	\(x\).	Let	the	quantity	\(S\)	be	a	parametric	quantity	whose	magnitude	is
equal	to	the	length	of	the	curve	\(c\)	where	\(c\)	can	be	any	arbitrary	curve.	(This	length	specifies	the	magnitude	of	our	parametric	quantitywhich	isnt	limited	to	being	just	physical	length	but	can	also	be	an	action,	a	period	of	time,	and	so	on.)Let	the	two	coordinates	\((q_j(x_1),x_1)\)	and	\((q_j(x_2),x_2)\)	denote	the	initial	and	final	coordinate	values
associated	with	a	system,	respectively.	In	many	physics	problems,	these	coordinate	values	are	typically	taken	to	denote	one	time	coordinate	(in	which	case	wed	replace	the	independent	variable	\(x\)	with	\(t\))	and	the	rest	of	the	coordinates	are	typically	taken	to	denote	whichever	spatial	coordinates	are	the	most	convenient	for	a	given	problem;	but	in
geometrical	problems	the	generalized	coordinates	are,	of	course,	taken	to	be	all	spatial	coordinates.	The	choice	of	what	kinds	of	generalized	coordinates	to	use	really	just	depends	on	the	problem	youre	trying	to	solve.Well	let	\(S\)	be	any	parametric	quantity	associated	with	a	system	going	from	\((q_j(x_1),x_1)\)	to	\((q_j(x_2),x_2)\),	even	those	which	are
not	minimized.	Now,	the	whole	purpose	of	this	section	will	be	to	find	the	minimum	value	of	\(S\)those	points	in	which	the	parametric	quantity	does	not	change	with	respect	to	the	variables	it	depends	on.	But	to	do	this,	we	must	first	write	an	expression	which	determines	the	length	\(S\)	of	any	arbitary	curve\(^1\).	How	does	one	calculate	the	magnitude
\(S\)?	To	do	this,	lets	divide	the	curve	\(c\)	into	infinitely	many,	infinitesimally	small	line	segments	of	length	\(ds\).	By	taking	the	infinite	sum	(which	is	to	say,	by	taking	the	integral)	of	all	these	small	lengths	of	\(ds\),	we	can	find	that	magnitude	of	\(S\)	is	given	by$$S=\int{dS}.\tag{1}$$Equation	(1)	is	nice	and	all,	but	we	should	re-express	it	in	terms	of
something	which	can	be	calculated	in	terms	of	the	independent	variable	\(x\).	As	a	first	steps	towards	doing	this,	we	can	rewriting	the	length	\(dS\)	using	the	Pythagorean	Theorem	to	obtain	\(dS=\sqrt{dx^2+dq_j^2}\).	Lets	substitute	this	equation	into	Equation	(1)	to	get$$S=\int_?^?\sqrt{dx^2+dq_j^2}.\tag{2}$$I	have	written	the	question	marks
in	the	limits	of	integration	to	denote	that	Im	leaving	them	out	for	the	moment.	Using	algebraic	manipulations,	we	can	express	the	integral	with	respect	to	the	independent	variable	\(x\)	to	obtain$$S(q_j,q_j,x)=\int_{x_1}^{x_2}\sqrt{1+\biggl(\frac{dq_j}{dx}\biggl)^2}dx=\int_{x_1}^{x_2}L(q_j,q_j,x)dx.\tag{3}$$where	the	integrand	is	some
functional	of	\(q_j(x)\),	\(q_j(x)\)	and	\(x\)	and	is	denoted	by	\(F(q_j(x),q_j(x),x)\).	(A	functional	is	something	which	is	a	function	of	a	function.)	To	find	the	minimum	of	\(q_j(x)\)	would	involve	a	procedure	which	you	are	already	familiar	with:	the	minimum	occurs	at	the	point	where	\(q_j(x)\)	will	not	change	(up	to	the	first	order\(^2\))	with	a	small	change	in
\(x\);	or,	written	in	another	way,	where	\(\frac{dq_j(x)}{dx}=0\).	Finding	the	minimum	value	of	\(S\)	isnt	quite	so	simple.	The	minimum	value	of	\(S\)	corresponds	to	a	point	where	\(S\)	does	not	change,	up	to	the	first	order,	with	small	changes	in	\(q_j\),	\(q_j\)	and	\(x\).	To	find	this	minimum,	we	must	use	a	technique	known	as	calculus	of	variations:	this
is,	basically,	a	procedure	in	which	we	use	clever	techniques	to	express	\(S\)	as	a	function	of	a	single	independent	variable	so	that	we	can	use	the	techniques	of	single-variable	calculus	in	order	to	find	its	minimum	value.The	first	step	necessary	to	accomplish	this	goal	will	be	to	assume	that	there	is	a	curve	\(\bar{q}_j(x)\)	which	is	that	particular	curve
whose	arc	length	\(S(\bar{q}_j(x),\bar{q}_j'(x),x\)	is	minimized.	As	previously	mentioned,	we	shall	let	\(q_j(x)\)	represent	any	curve	between	\(q_j(x_1)\)	and	\(q_j(x_2\)	so	long	that	it	is	everywhere	smooth	and	continuous.	We	shall,	however,	require	the	two	constraints	that	\(\bar{q}_j(x_1)=q_j(x_1)\)	and	\(\bar{q}_j(x_2)=q_j(x_2)\).	We	shall	now	define
a	new	function	\(\eta(x)\)	which	we	will	let	be	any	smooth	curve	such	that	\(\eta(x_1)=0\)	and	\(\eta(x_2)=0\).	Lets	also	define	a	parameter	which	we'll	call	\(\epsilon\)	which	we	shall	let	be	defined	by	the	equation$$q_j(x)=\bar{q}_j(x)+\epsilon\eta(x).\tag{4}$$The	product	\(\epsilon\eta(x)\)	is	the	error	between	the	correct	path	\(\bar{q}_j(x)\)	(the	one
whose	arc	length	is	minimized)	and	the	arbitrarily	chosen	path	\(q_j(x)\).	By	simply	letting	\(\eta(x)\)	be	a	particular	function	(pick	any	you	like;	I	have	chosen	the	one	illustrated	in	Figure	#),	so	long	as	it	satisfies	the	aforementioned	constraints,	then	we	can	vary	\(q_j\)	with	the	single	parameter	\(\epsilon\)	and	write	\(q_j(\epsilon)\).	The	previous
sentence,	for	the	purpose	of	comprehensibility,	requires	a	little	explanation.	For	the	two	fixed	initial	conditions	\(q_j(x_1),	x_1)\)	and	\((q_j(x_2),x_2)\),	the	function	\(q_j(x)\)	does	not	vary	with	the	two	functions	\(\bar{q}_j(x)\)	and	\(\eta(x)\).	The	reason	why	\(q_j(x)\)	does	not	vary	with	\(\bar{q}_j(x)\)	is	because	\(\bar{q}_j(x)\)	will	not	change	regardless
of	what	\(q_j(x)\)	is\(\bar{q}_j(x)\)	depends	upon	only	the	initial	conditions	\((q_j(x_1),x_1)\)	and	\((q_j(x_2),x_2)\)	being	different.	Basically,	it	would	be	very	easy	to	see	visually,	on	a	graph,	that	by	choosing	two	different	initial	conditions,	the	shortest	path	(\(\bar{q}_j\))	connecting	those	two	points	will	also	have	to	be	different.	Figure	1	(click	to	expand)
Lastly,	since	we	let	\(\eta(x)\)	be	a	particular	function,	it	follows	that	it	also	only	depends	on	the	initial	conditions.	(As	you	move	the	two	points	\(q_j(x_1),	x_1)\)	and	\((q_j(x_2),x_2)\)	apart	or	towards	each	other,	you	could	imagine	\(\eta(x)\)	having	to	elongate	or	contract.)	It	follows	that	\(q_j(x)\)	is,	therefore,	not	a	function	of	\(\eta(x)\).	I	have	shown	in
Figure	1	how	\(\eta\)	(due	to	the	way	in	which	we	defined	it	by	Equation	(1))	varies	with	\(x\)	in	such	a	way	that	by	adding	\(\epsilon\eta(x)\)	to	the	"correct	function"	\(\bar{q}_j(x)\),	we	always	manage	to	land	on	\(q_j(x)\).	Now,	\(q_j(x)\)	represents	"any"	arbitrary	curve;	indeed,	we	could	change	\(q_j(x)\)	to	whatever	we	wanted	and	\(\epsilon\)	would
still	satisfy	Equation	(1).	In	other	words,	we	could	just	add	a	different	function	\(\epsilon\eta(x)\)	(where	\(\epsilon\)	changed	a	little	but	\(\eta(x)\)	did	not)	to	\(\bar{q}_j(x)\)	and	land	on	\(q_j(x)\)	again	as	in	Figure	1.	What	all	of	this	means	is	that	the	only	thing	which	\(q_j\)	depends	on	in	Equation	(1)	is	\(\epsilon\);	therefore,	we	can
write$$q_j(\epsilon)=\bar{q}_j+\epsilon\eta.\tag{5}$$By	taking	the	derivative	with	the	respect	to	\(x\)	on	both	sides,	we	get$$q_j'(\epsilon)=\bar{q}_j'+\epsilon\eta'.\tag{6}$$At	this	point,	we	are	now	able	to	express	the	functional	\(S(q_j(x),q_j'(x),x)\)	as	the	function	\(S(\epsilon)\).	The	minimum	value	of	\(S()\)	occurs	at	a	point	where	\(\frac{dS()}
{d}=0\).	In	order	to	investigate	the	mathematical	relationships	which	satisfy	this	condition	(the	condition	that	\(S()\)	is	minimized),	lets	differentiate	both	sides	of	Equation	(3),	set	it	equal	to	zero,	and	then	proceed	to	use	algebra	to	find	mathematical	relationships	which	satisfy	this	condition.	Starting	with	the	first	step,	we	have$$\frac{dS()}
{d}=\int_{x_1}^{x_2}\frac{}{}[L(q_j,q_j,x)]dx=0.\tag{7}$$(To	clarify	any	potential	confusion,	I	took	the	partial	derivative	\(_\)	on	both	sides;	since	the	function	\(S()\)	on	the	left-hand	side	is	a	single-variable	function,	it	follows	that	\(_S()=\frac{dS()}{d}\).)	Since	\(L(q_j,q_j,x)\)	is	a	functional,	in	order	to	evaluate	the	partial	derivative	\(_L(q_j,q_j,x\),
we	must	use	the	chain	rule	to	get$$\frac{dS()}{d}=\int_{x_1}^{x_2}\biggl(\frac{L}{q_j}\frac{q_j}{}+\frac{L}{q_j}\frac{q_j}{}\biggl)dx.\tag{8}=0.$$Lets	evaluate	the	partial	derivatives	\(/[q_j(\epsilon)]\)	and	\(/[q_j(\epsilon)]\)	to	get$$\frac{q_j(\epsilon)}{}=\frac{}{}(\bar{q}_j(x)+\eta(x))=\eta(x)$$and$$\frac{q_j(\epsilon)}{}=\frac{}{}
(\bar{q}_j(x)+\eta(x))=\eta(x).$$Lets	substitute	these	results	into	Equation	(8)	to	get$$\frac{dS()}{d}=\int_{x_1}^{x_2}\biggl(\frac{L}{q_j}\eta(x)+\frac{L}{q_j}\eta(x)\biggl)dx=\int_{x_1}^{x_2}\frac{L}{q_j}\eta(x)dx+\int_{x_1}^{x_2}\frac{L}{q_j}\eta'(x)dx=0.\tag{9}$$There	is	great	value	in	employing	integration	by	parts	on	the	second
integral	in	Equation	(9)	since	itll	allow	us	to	rewrite	the	integrand	of	the	form,	\(\text{some	stuff	times	}\eta=0\);	this	form	has	the	equations	of	motion	right	in	front	of	our	face	as	we	shall	see.	From	the	standpoint	of	physics,	the	motivation	of	this	is	apparent	as	the	equations	of	motion	will	allow	us	to	determine	the	motion	of	a	system.	Recall	that	the
equation	for	integrating	by	parts	is	given	by$$\int_{v_1}^{v_2}udv=uv-\int_{v_1}^{v_2}vdu.$$If	we	let	\(u=L/q_j\)	and	\(dv=\eta(x)\),	then	our	second	integral	can	be	simplified	to$$\int_{x_1}^{x_2}\eta(x)\frac{L}{q_j}dx=\biggl(\int{udv}\biggl)dx=\biggl(\frac{L}{q_j}\eta(x)|_{x_1}^{x_2}-\int_{x_1}^{x_2}\eta(x)\frac{d}{dx}\frac{L}
{q_j}\biggl)dx=-\int_{x_1}^{x_2}\eta(x)\frac{d}{dx}\frac{L}{q_j}dx.$$Lets	substitute	this	result	into	Equation	(9)	to	get$$\frac{dS()}{d}=\int_{x_1}^{x_2}\eta(x)\biggl[\frac{L}{q_j}-\frac{d}{dx}\frac{L}{q_j}\biggl]dx.\tag{10}$$Since	\(\eta(x)\)	can	be	any	arbitrary	function	it	is,	in	general,	not	equal	to	zero.	Therefore,	the	other	term	in	the
product	must	be	zero	and	we	have$$\frac{L}{q_j}-\frac{d}{dx}\frac{L}{q_j}=0.\tag{11}$$Equation	(11)	is	known	as	the	Euler-Lagrange	equation	and	it	is	the	mathematical	consequence	of	minimizing	a	functional	\(S(q_j(x),q_j(x),x)\).	It	is	a	differential	equation	which	can	be	solved	for	the	dependent	variable(s)	\(q_j(x)\)	such	that	the	functional	\
(S(q_j(x),q_j(x),x)\)	is	minimized.	The	next	few	sections	will	be	concerned	with	different	problems	in	which	the	question	starts	off	as:	find	the	minimum	value	of	some	quantity	\(S\).	These	problems	start	off	with	a	little	math	to	express	the	quantity	as	a	functional.	All	of	the	problems	boil	down	to	solving	for	the	coordinates	\(q_j(x)\)	which	minimize	\(S\);
this	will	be	accomplished	by	solving	Equation	(11).	Although	simple	to	say,	we	shall	see	that	this	can,	sometimes,	involve	a	lot	of	algebra	and	tinkeringthe	math	will	sometimes	get	a	little	hairy.	Notes1.	When	we	think	about	the	curve	\(q_j(x)\)	which	minimizes	the	quantity	\(S=\int{(dq_j^2+dx^2)}\),	it	is	important	not	to	lose	track	of	the	generality	of
our	choice	of	coordinates	\(q_j\)	and	\(x\).	In	some	problems,	we'll	just	choose	\(q_j\)	and	\(x\)	to	be	spatial	coordinates	in	which	case	\(S=\int{(dq_j^2+dx^2)}\)	is	a	measure	of	distance;	but	in	other	problems,	we'll	choose	\(x\)	to	be	a	time	coordinate	in	which	case	\(S=\int{(dq_j^2+dx^2)}\)	is	not	a	measure	of	distance.	I	wanted	to	mention	this	early
on	because	a	common	confusion	and	ambiguity	is	whether	or	not	this	derivation	we'll	be	doing	in	this	section	applies	only	to	functionals	\(S\)	which	measure	length.	Be	reassured	that	this	is	not	the	case;	\(S\)	can	measure	many	other	things	besides	length	as	we'll	see	in	subsequent	sections	where	we	solve	some	problems	using	the	analysis	we
developed	in	this	section.2.	The	minimum	value	of	some	arbitrary	single	variable	function,	say	\(y(t)\),	occurs	when	\(\frac{dy(t)}{dt}=0\).	This	condition	implies	that	for	a	very	small	change	in	time	\(dt\),	the	change	in	the	function	is	\(dy(t)=0\).	You	might	be	wondering:	if	\(t\)	changed	by	a	very	small	amount,	then	why	didnt	\(y(t)\)	change	by	a	very
small	amount	as	well?	In	reality,	\(y(t)\)	did	in	fact	change	a	little:	but	this	change	is	captured	in	only	2nd	order	(and	higher)	derivatives	and,	according	to	Feynman,	the	deviation	of	the	function	from	its	minimum	value	is	only	second	order	[or	higher].	The	full	expression	describing	the	differential	change	in	\(y(t)\)	is,	in	general,	a	function	of	the	nth
order	derivative.	In	this	example,	the	change	in	\(y(t)\)	as	a	function	of	the	first	order	derivative	is	zero.	The	terminology	and	phrasing	used	to	describe	the	previous	sentence	is	as	follows:	we	say	that	the	function	\(y(t)\)	does	not	change	up	to	the	first	order.	Share	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even
commercially.	Adapt	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in
any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license
permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights
may	limit	how	you	use	the	material.	Share	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	You	must	give	appropriate
credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional
restrictions	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not
give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	
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