
	

https://dekufuxexuwin.maxudijuz.com/890091295568319568848164451122749765117042?bozevezegumabizuxulejewizoxebutivepopupirebit=bovibevogefanepigiliditufesukobofugabemusopikurawuwoninenalelezaforesejalubivaganefogunirobowuriwobimuxivuvatetikikiwasezadowesitugizukobilabaxowerujaxakakadefisanuvedarorigawaxemupuzadedidipemomutavevafowagesi&utm_kwd=problem+solving+in+data+structures+%26+algorithms+using+python+by+hemant+jain&vorokalewevovexugidedoreturimunaxuxezatidulibejegogo=manofofobapojasunodadomofekaxebavogewasovepafezikorazisavemevawewajusebibukekadudosomasexeniwesujotewuladaboxezilutumukebugadabozi

Seems	like	cookies	are	disabled	on	this	browser,	please	enable	them	to	open	this	website	It	includes	AI	that	generates	DSA	solutions	in	four	languages:	C,	C++,	Java,	and	Python.	Seems	like	cookies	are	disabled	on	this	browser,	please	enable	them	to	open	this	website	Source:	Update	18	October	2019:	I	have	created	a	curation	of	Leetcode	problems
which	I	personally	use	to	prepare	for	technical	interviews.	Stars	are	welcome,	and	feel	free	to	fork	it	for	your	own	modification	and	use!	Ill	be	adding	more	questions	in	time!	:)If	youre	looking	for	a	new	job,	use	Triplebyte	to	interview	once	and	apply	to	multiple	top	tech	companies!This	post	draws	on	my	personal	experiences	and	challenges	over	the
past	term	at	school,	which	I	entered	with	hardly	any	knowledge	of	DSA	(data	structures	and	algorithms)	and	problem-solving	strategies.	As	a	self-taught	programmer,	I	was	a	lot	more	familiar	and	comfortable	with	general	programming,	such	as	object-oriented	programming,	than	with	the	problem-solving	skills	required	in	DSA	questions.This	post
reflects	my	journey	throughout	the	term	and	the	resources	I	turned	to	in	order	to	quickly	improve	my	data	structures,	algorithms,	and	problem-solving	skills.Problem:	You	know	the	theory,	but	you	get	stuck	on	practical	applicationsI	faced	this	issue	early	in	the	term	when	I	didnt	know	what	I	didnt	know,	which	is	a	particularly	pernicious	problem.	I
understood	the	theory	well	enough	for	instance,	what	a	linked	list	was,	how	it	worked,	its	various	operations	and	their	time	complexities,	the	ADTs	(abstract	data	types)	it	supported,	and	how	the	ADT	operations	were	implemented.But	because	I	didnt	know	what	I	didnt	know,	I	couldnt	identify	gaps	in	my	understanding	of	its	practical	applications	in
problem-solving.The	different	types	of	questionsAn	example	of	a	data	structures	question:	describe	how	you	would	insert	a	node	in	a	linked	list	and	state	the	time	complexity.And	heres	an	algorithms	question:	search	for	an	element	in	a	rotated	sorted	array	and	state	the	time	complexity.Finally,	a	problem-solving	question,	which	I	consider	to	be	at	a
higher	level	than	the	previous	two,	might	briefly	describe	a	scenario,	and	list	the	requirements	of	the	problem.	In	an	exam	it	might	ask	for	a	description	of	the	solution.	In	competitive	programming	it	might	require	you	to	submit	working	code	without	explicitly	providing	any	data	structures	or	algorithms.	In	other	words,	you	are	expected	to	apply	the
most	applicable	data	structures	and	algorithms	to	solve	the	problem	as	efficiently	as	possible.How	can	you	improve	your	data	structures,	algorithms,	and	problem-solving	skills?I	primarily	use	three	websites	for	practice:	HackerRank,	LeetCode,	and	Kattis.	They	are	largely	similar,	especially	the	first	two,	but	not	identical.	I	find	that	each	site	has	a
slightly	different	focus,	each	of	which	is	immensely	helpful	in	its	own	way.I	would	loosely	categorize	the	skills	required	for	problem-solving	into:knowledge	of	data	structuresknowledge	of	algorithmsknowledge	of	the	application	of	data	structures	and	algorithmsThe	first	two	could	be	considered	the	primitives,	or	building	blocks,	that	go	into	the	third,
which	is	about	knowing	what	to	apply	for	a	particular	scenario.Knowledge	of	data	structuresIn	this	respect,	I	found	HackerRank	to	be	a	valuable	resource.	It	has	a	section	dedicated	to	data	structures,	which	you	can	filter	by	type,	such	as	arrays,	linked	lists,	(balanced)	trees,	heaps,	and	so	forth.The	questions	are	not	so	much	about	problem-solving	as
they	are	about	working	with	data	structures.	For	instance:You	get	the	idea.	Some	of	the	questions	might	not	ever	be	directly	applicable	in	problem-solving.	But	they	are	great	for	conceptual	understanding,	which	is	extremely	important	in	any	case.HackerRank	does	not	have	freely	accessible	model	solutions,	although	the	discussions	section	is	usually
full	of	hints,	clues,	and	even	working	code	snippets.	I	have	found	those	to	be	adequate	so	far,	although	you	might	have	to	step	through	the	code	a	line	at	a	time	in	an	IDE	to	really	understand	something.Knowledge	of	algorithmsHackerRank	also	has	an	algorithms	section,	although	I	prefer	LeetCode	for	this.	I	found	LeetCodes	variety	of	problems	to	be
a	lot	wider,	and	I	really	like	that	a	lot	of	problems	have	solutions	with	explanations	and	even	time	complexities.A	great	starting	point	would	be	LeetCodes	top	100	liked	questions.	Some	questions	which	I	thought	were	great:Unlike	data	structures	questions,	the	focus	here	isnt	so	much	about	working	with	or	manipulating	data	structures,	but	rather,
how	to	do	something.	For	instance,	the	accounts	merge	problem	is	primarily	on	the	application	of	standard	UFDS	algorithms.	The	searching	in	a	rotated	sorted	array	problem	presents	a	twist	on	binary	search.	And	sometimes	you	learn	an	entirely	new	problem-solving	technique.	For	example,	the	sliding	window	solution	for	the	longest	continuous
increasing	subsequence	problem.Knowledge	of	the	application	of	data	structures	and	algorithmsFinally,	I	use	Kattis	to	improve	my	general	problem-solving	skills.	The	Kattis	Problem	Archive	has	a	bunch	of	programming	problems	from	various	sources,	such	as	competitive	programming	competitions,	around	the	world.Kattis	can	be	incredibly
frustrating	because	there	are	no	official	solutions	or	a	discussion	forum,	(unlike	HackerRank	and	LeetCode).	Also,	test	cases	are	private.	I	have	a	handful	of	pending	Kattis	problems	which	I	cant	solve	not	because	I	dont	know	the	solution,	but	because	I	cant	figure	out	the	bug.Its	my	least	favorite	site	among	the	three	for	practicing	and	learning,	and	I
didnt	spend	a	lot	of	time	on	it.Other	resourcesGeeksforgeeks	is	another	very	valuable	resource	for	learning	about	data	structures	and	algorithms.	I	like	how	it	provides	code	snippets	in	various	languages,	usuallyC++,	Java,	and	Python,	which	you	can	copy	and	paste	into	your	IDE	to	step	through	line-by-line.Finally,	there	is	trusty	old	Google,	which
would	lead	you	to	GeeksForGeeks	most	of	the	time,	and	Youtube,	for	visual	explanations.ConclusionAt	the	end	of	the	day,	however,	there	are	no	shortcuts.	You	just	have	to	dive	into	it	head-first	start	writing	code,	debugging	code,	and	reading	other	peoples	correct	code	to	figure	out	where,	how,	and	why	you	went	wrong.	Its	tough,	but	you	get	better
with	each	attempt,	and	it	gets	easier	as	you	get	better.Im	nowhere	near	the	level	of	competency	I	want	to	be,	but	Ive	definitely	come	a	long	way	since	I	started.	:)	CategoryArrayBacktrackingBinary	TreeBit	ManipulationBSTDivide	&	ConquerDynamic	ProgrammingGraphHeapLinked	ListMatrixProgramming	PuzzlesQueueSortingStackStringTrie
TagAlgorithmBinary	SearchBottom-upBreadth-First	SearchDepth-First	SearchGreedyHashingMust	KnowPriority	QueueRecursiveSliding	WindowTop-down	DifficultyEasyMediumHardBeginner	Curated	ListsTop	100	Most	LikedTop	50	ClassicTop	25	AlgorithmsTop	10	DP1.	Find	a	pair	with	the	given	sum	in	an	arrayArray,	SortingAmazon,
HashingTopClassic,	TopLikedEasy2.	Check	if	a	subarray	with	0	sum	exists	or	notArrayHashingTopLikedMedium3.	Print	all	subarrays	with	0	sumArrayAmazon,	HashingTopLikedMedium4.	Sort	binary	array	in	linear	timeArray,	SortingTopLikedEasy5.	Find	maximum	length	subarray	having	a	given	sumArrayHashingTopLikedMedium6.	Find	the	largest
subarray	having	an	equal	number	of	0s	and	1sArrayHashingTopLikedMedium7.	Find	the	maximum	product	of	two	integers	in	an	arrayArray,	SortingTopLikedEasy8.	Sort	an	array	of	0s,	1s,	and	2s	(Dutch	National	Flag	Problem)Array,	SortingAlgorithm,	Amazon,	MicrosoftTopClassic,	TopLikedMedium9.	In-place	merge	two	sorted	arraysArray,
SortingTopLikedMedium10.	Merge	two	arrays	by	satisfying	given	constraintsArray,	SortingMedium11.	Find	index	of	0	to	be	replaced	to	get	the	maximum	length	sequence	of	continuous	onesArrayAmazonHard12.	Shuffle	an	array	using	FisherYates	shuffle	algorithmArrayAlgorithmMedium13.	Rearrange	an	array	with	alternate	high	and	low
elementsArrayAmazonTopLikedMedium14.	Find	equilibrium	index	of	an	arrayArrayAmazonEasy15.	Find	the	largest	subarray	formed	by	consecutive	integersArrayAmazon,	HashingTopClassic,	TopLikedMedium16.	BoyerMoore	Majority	Vote	AlgorithmArrayAlgorithm,	Amazon,	Hashing,	MicrosoftTopAlgoEasy17.	Move	all	zeros	present	in	an	array	to
the	endArray,	SortingAmazonTopLikedEasy18.	Replace	every	array	element	with	the	product	of	every	other	elementArrayRecursiveMedium19.	Longest	Bitonic	Subarray	ProblemArrayAlgorithmTopClassicMedium20.	Find	maximum	difference	between	two	array	elements	that	satisfies	given	constraintsArrayAmazonTopLikedMedium21.	Maximum	Sum
Subarray	Problem	(Kadanes	Algorithm)Array,	DPAlgorithm,	Amazon,	Microsoft,	Must	KnowTopAlgo,	TopClassic,	TopAlgoEasy22.	Print	continuous	subarray	with	maximum	sumArrayMedium23.	Maximum	Sum	Circular	SubarrayArrayAlgorithmTopLikedHard24.	Find	all	distinct	combinations	of	a	given	length	IArray,
SortingRecursiveTopLikedMedium25.	Find	all	distinct	combinations	of	a	given	length	IIArray,	SortingRecursiveMedium26.	Find	maximum	sequence	of	continuous	1s	formed	by	replacing	at-most	k	0s	by	1sArraySliding	WindowMedium27.	Find	minimum	sum	subarray	of	size	kArrayAmazon,	Sliding	WindowMedium28.	Maximum	Product	Subarray
ProblemArrayAlgorithm,	AmazonTopClassic,	TopLikedHard29.	Find	a	subarray	having	the	given	sum	in	an	integer	arrayArrayAmazon,	Hashing,	Sliding	WindowMedium30.	Find	the	smallest	subarray	length	whose	sum	of	elements	is	greater	than	kArraySliding	WindowMedium31.	Find	the	smallest	window	in	an	array	sorting	which	will	make	the	entire
array	sortedArray,	SortingMedium32.	Find	maximum	sum	path	involving	elements	of	given	arraysArrayAmazon,	MicrosoftMedium33.	Find	maximum	profit	earned	by	buying	and	selling	shares	any	number	of	timesArrayAmazonTopLikedMedium34.	Trapping	Rain	Water	ProblemArrayAlgorithm,	Amazon,	MicrosoftTopClassicHard35.	Find	minimum
platforms	needed	to	avoid	delay	in	the	train	arrivalArray,	SortingGreedyMedium36.	Decode	an	array	constructed	from	another	arrayArrayMedium37.	Sort	an	array	in	one	swap	whose	two	elements	are	swappedArray,	SortingEasy38.	Find	a	triplet	with	the	given	sum	in	an	arrayArray,	SortingHashing,	RecursiveTopClassic,	TopLikedMedium39.	Find	the
longest	continuous	sequence	length	with	the	same	sum	in	given	binary	arraysArrayHashingHard40.	Reverse	every	consecutive	m-elements	of	a	subarrayArrayRecursiveMedium41.	Maximum	Product	Subset	ProblemArrayAlgorithm,	RecursiveTopClassicEasy42.	Find	pairs	with	difference	k	in	an	arrayArray,	SortingHashingEasy43.	4Sum	Problem	|
Quadruplets	with	a	given	sumArray,	SortingAlgorithm,	Hashing,	RecursiveTopClassic,	TopLikedMedium44.	Print	all	quadruplets	with	a	given	sum	|	4	sum	problem	extendedArray,	SortingMedium45.	Count	quadruplets	with	a	zero	sumArrayHashingMedium46.	Quickselect	AlgorithmArrayAlgorithm,	RecursiveTopAlgoMedium47.	Rearrange	array	such
that	A[A[i]]	is	set	to	i	for	every	element	A[i]ArrayHard48.	Print	all	triplets	that	form	an	arithmetic	progressionArrayMedium49.	Print	all	triplets	that	form	a	geometric	progressionArrayMedium50.	Group	elements	of	an	array	based	on	their	first	occurrenceArrayHashingMedium51.	Find	minimum	difference	between	the	index	of	two	given	elements
present	in	an	arrayArrayEasy52.	Find	maximum	absolute	difference	between	the	sum	of	two	non-overlapping	subarraysArrayHard53.	Find	all	symmetric	pairs	in	an	array	of	pairsArrayHashingMedium54.	Find	the	closest	pair	to	a	given	sum	in	two	sorted	arraysArrayMedium55.	Partition	an	array	into	two	subarrays	with	the	same	sumArrayEasy56.	Find
the	count	of	distinct	elements	in	every	subarray	of	size	kArrayHashing,	Microsoft,	Sliding	WindowMedium57.	Find	two	numbers	with	maximum	sum	formed	by	array	digitsArray,	SortingEasy58.	Print	all	subarrays	of	an	array	having	distinct	elementsArrayHashing,	Sliding	WindowMedium59.	Find	a	triplet	having	the	maximum	product	in	an	arrayArray,
SortingMedium60.	Find	the	minimum	index	of	a	repeating	element	in	an	arrayArrayHashingEasy61.	Find	a	pair	with	a	minimum	absolute	sum	in	an	arrayArray,	SortingEasy62.	Find	an	index	of	the	maximum	occurring	element	with	equal	probabilityArrayHashingEasy63.	Check	if	an	array	is	formed	by	consecutive	integersArrayHashingMedium64.	Find
two	non-overlapping	pairs	having	the	same	sum	in	an	arrayArrayHashingMedium65.	Add	elements	of	two	arrays	into	a	new	arrayArrayRecursiveEasy66.	Find	minimum	product	among	all	combinations	of	triplets	in	an	arrayArray,	SortingMedium67.	Count	distinct	absolute	values	in	a	sorted	arrayArrayHashing,	Sliding	WindowMedium68.	Print	all
combinations	of	positive	integers	in	increasing	order	that	sums	to	a	numberArrayRecursiveHard69.	Find	subarrays	with	a	given	sum	in	an	arrayArrayHashingTopLikedMedium70.	Find	maximum	length	sequence	of	continuous	ones	(Using	Sliding	Window)ArrayAmazon,	Sliding	WindowMedium71.	Find	maximum	length	sequence	of	continuous
onesArrayAmazonMedium72.	Find	the	index	that	divides	an	array	into	two	non-empty	subarrays	with	equal	sumArrayEasy73.	Efficiently	calculate	the	frequency	of	all	elements	present	in	a	limited	range	arrayArrayHashingMedium74.	Rearrange	an	array	such	that	it	contains	alternate	positive	and	negative	numbersArray,	SortingMedium75.	Find	the
sorted	triplet	in	an	arrayArrayMedium76.	Shuffle	an	array	according	to	the	given	order	of	elementsArrayHashingMedium77.	Count	the	number	of	strictly	increasing	subarrays	in	an	arrayArrayMedium78.	Find	duplicates	within	a	range	k	in	an	arrayArrayHashing,	Sliding	WindowEasy79.	Find	a	minimum	range	with	at	least	one	element	from	each	of
the	given	arraysArrayMicrosoftHard80.	Find	the	longest	subsequence	formed	by	consecutive	integersArrayHashingTopClassicMedium81.	Determine	the	index	of	an	element	that	satisfies	given	constraints	in	an	arrayArrayEasy82.	Find	minimum	moves	required	for	converting	a	given	array	to	an	array	of	zeroesArrayMedium83.	Left	rotate	an
arrayArrayEasy84.	Right	rotate	an	array	k	timesArrayTopLikedEasy85.	Activity	Selection	ProblemArray,	SortingAlgorithm,	Amazon,	GreedyTopClassicEasy86.	Job	Sequencing	Problem	with	DeadlinesArray,	SortingAlgorithm,	GreedyTopClassic,	TopLikedMedium87.	3partition	problem	extended	|	Printing	all	partitionsArrayRecursiveHard88.	Count
triplets	which	form	an	inversion	in	an	arrayArrayEasy89.	Determine	whether	an	array	can	be	divided	into	pairs	with	a	sum	divisible	by	kArrayHashingMedium90.	Find	minimum	removals	required	in	an	array	to	satisfy	given	constraintsArrayMedium91.	Find	a	pair	with	the	given	sum	in	a	circularly	sorted	arrayArrayMedium92.	Segregate	positive	and
negative	integers	in	linear	timeArray,	SortingEasy93.	Find	all	distinct	combinations	of	a	given	length	that	sum	to	a	targetArrayRecursionMedium94.	Find	all	duplicate	elements	in	a	limited	range	arrayHashingEasy95.	Find	the	minimum	and	maximum	element	in	an	array	using	minimum	comparisonsArrayMedium96.	Insertion	Sort	AlgorithmArray,
SortingAlgorithm,	Must	Know,	RecursiveTopAlgoEasy97.	Selection	Sort	AlgorithmArray,	SortingAlgorithm,	Must	Know,	RecursiveTopAlgoEasy98.	Bubble	Sort	AlgorithmArray,	SortingAlgorithm,	RecursiveEasy99.	Merge	Sort	AlgorithmArray,	Divide	&	Conquer,	SortingAlgorithm,	Microsoft,	Must	Know,	RecursiveTopAlgoEasy100.	Iterative	Merge	Sort
Algorithm	(Bottom-up	Merge	Sort)Array,	Divide	&	Conquer,	SortingAlgorithmMedium101.	Quicksort	AlgorithmArray,	Divide	&	Conquer,	SortingAlgorithm,	Must	Know,	RecursiveTopAlgoMedium102.	Hybrid	QuickSort	AlgorithmArray,	Divide	&	Conquer,	SortingAlgorithm,	RecursiveMedium103.	Quicksort	using	Dutch	National	Flag	AlgorithmArray,
Divide	&	Conquer,	SortingAlgorithm,	RecursiveMedium104.	Quicksort	algorithm	using	Hoares	partitioning	schemeArray,	Divide	&	Conquer,	SortingAlgorithm,	RecursiveMedium105.	Counting	Sort	AlgorithmArray,	SortingAlgorithm,	Must	KnowTopAlgoEasy106.	In-place	vs	out-of-place	algorithmsSortingAlgorithm,	Must	KnowBeginner107.	Inversion
count	of	an	arrayArray,	Divide	&	Conquer,	SortingAlgorithm,	Amazon,	Microsoft,	RecursiveTopLikedHard108.	Problems	solved	using	partitioning	logic	of	QuicksortArray,	SortingEasy109.	Sort	elements	by	their	frequency	and	indexArray,	SortingAmazon,	Hashing,	MicrosoftMedium110.	Sort	an	array	based	on	order	defined	by	another	arrayArray,
SortingAmazon,	HashingMedium111.	Efficiently	sort	an	array	with	many	duplicated	valuesArray,	SortingHashingMedium112.	Find	the	largest	number	possible	from	a	given	set	of	numbersArray,	SortingTopLikedMedium113.	Find	surpasser	count	for	each	array	elementArray,	SortingHashing,	RecursiveHard114.	Segregate	positive	and	negative
integers	using	merge	sortArray,	Divide	&	Conquer,	SortingMedium115.	How	to	Boost	QuickSort	Performance?SortingRecursiveEasy116.	Water	Jugs	ProblemArray,	SortingAlgorithm,	RecursiveTopClassicHard117.	Print	matrix	in	spiral	orderMatrixAmazon,	RecursiveTopLikedMedium118.	Create	a	spiral	matrix	from	a	given	arrayMatrixMedium119.
Shift	all	matrix	elements	by	1	in	spiral	orderMatrixMedium120.	Change	all	elements	of	row	i	and	column	j	in	a	matrix	to	0	if	cell	(i,	j)	is	0MatrixAmazonTopLikedMedium121.	Print	diagonal	elements	of	a	matrix	having	a	positive	slopeMatrixMedium122.	Replace	all	occurrences	of	0	that	are	not	surrounded	by	1	in	a	binary	matrixMatrixDepth-First
Search,	RecursiveMedium123.	In-place	rotate	matrix	by	90	degrees	in	a	clockwise	directionMatrixAmazonEasy124.	Count	negative	elements	present	in	the	sorted	matrix	in	linear	timeMatrixEasy125.	Report	all	occurrences	of	an	element	in	a	row-wise	and	column-wise	sorted	matrixMatrixMedium126.	Check	if	a	matrix	is	a	Toeplitz	or
notMatrixEasy127.	In-place	rotate	matrix	by	180	degreesMatrixMedium128.	Fill	binary	matrix	with	alternating	rectangles	of	0	and	1MatrixMedium129.	Find	all	common	elements	present	in	each	row	of	a	matrixMatrixHashingMedium130.	Find	common	elements	present	in	all	rows	of	a	matrixMatrixHashingMedium131.	Find	the	index	of	a	row
containing	the	maximum	number	of	1s	in	a	binary	matrixMatrixHard132.	Find	the	largest	square	submatrix	which	is	surrounded	by	all	1sMatrixMedium133.	Print	a	spiral	square	matrix	without	using	any	extra	spaceMatrixHard134.	Young	Tableau	|	Insert,	Search,	Extract-Min,	Delete,	ReplaceMatrixAlgorithm,	RecursiveHard135.	Replace	all
occurrences	of	0	that	are	surrounded	by	1	in	a	binary	matrixMatrixDepth-First	Search,	RecursiveMedium136.	Find	the	area	of	the	largest	rectangle	of	1s	in	a	binary	matrixMatrixHard137.	Find	maximum	value	of	M[c][d]	M[a][b]	over	all	choices	of	indexesMatrixMedium138.	Generate	pascal	triangle	of	the	given	sizeMatrixEasy139.	Find	perimeter	of
an	IslandMatrixEasy140.	Find	kth	smallest	value	in	a	sorted	matrixMatrix,	Divide	&	ConquerBinary	SearchMedium141.	Sort	an	array	using	Young	tableauArray,	Matrix,	SortingRecursiveHard142.	Print	all	possible	solutions	to	NQueens	problemBacktracking,	MatrixAlgorithm,	RecursiveTopClassic,	TopLikedHard143.	Print	all	possible	Knights	tours	on
a	chessboardBacktracking,	MatrixRecursiveTopClassic,	TopLikedHard144.	Find	the	shortest	path	in	a	mazeBacktracking,	MatrixMaze,	RecursiveTopLikedMedium145.	Find	the	longest	possible	route	in	a	matrixBacktracking,	MatrixMaze,	RecursiveMedium146.	Find	the	path	from	source	to	destination	in	a	matrix	that	satisfies	given
constraintsBacktracking,	MatrixDepth-First	Search,	Maze,	RecursiveMedium147.	Find	the	total	number	of	unique	paths	in	a	maze	from	source	to	destinationBacktracking,	MatrixMaze,	RecursiveTopLikedMedium148.	Find	all	combinations	of	elements	satisfying	given	constraintsArray,	BacktrackingAmazon,	RecursiveMedium149.	KPartition	Problem	|
Printing	all	partitionsArray,	BacktrackingAlgorithm,	RecursiveTopClassic,	TopLikedHard150.	Magnet	PuzzleBacktracking,	MatrixRecursiveHard151.	Find	all	paths	from	the	first	cell	to	the	last	cell	of	a	matrixBacktracking,	MatrixAmazon,	RecursiveMedium152.	Print	all	shortest	routes	in	a	rectangular	gridBacktracking,	MatrixRecursiveMedium153.
Find	all	distinct	combinations	of	a	given	length	with	repetition	allowedArray,	Backtracking,	SortingRecursiveMedium154.	Print	all	combinations	of	numbers	from	1	to	n	having	sum	nArray,	BacktrackingRecursiveTopLikedMedium155.	Print	all	triplets	in	an	array	with	a	sum	less	than	or	equal	to	a	given	numberArray,	Backtracking,	SortingMedium156.
Check	if	a	string	is	a	rotated	palindrome	or	notStringRecursiveMedium157.	Longest	Palindromic	Substring	ProblemStringAlgorithm,	MicrosoftTopClassic,	TopLikedMedium158.	Check	if	a	repeated	subsequence	is	present	in	a	string	or	notStringHashing,	RecursiveHard159.	Check	if	strings	can	be	derived	from	each	other	by	circularly	rotating
themStringEasy160.	Check	if	a	set	of	moves	is	circular	or	notStringAmazonMedium161.	Convert	a	number	into	a	corresponding	excel	column	nameStringAmazon,	MicrosoftMedium162.	Convert	column	name	in	Excel	to	the	corresponding	numberStringEasy163.	Find	all	interleaving	of	given	stringsStringRecursiveEasy164.	Isomorphic
StringsStringHashingMedium165.	Remove	all	extra	spaces	from	a	stringStringMedium166.	Find	all	possible	palindromic	substrings	of	a	stringStringTopLikedHard167.	Find	all	possible	combinations	of	words	formed	from	the	mobile	keypadStringAmazon,	RecursiveTopLikedHard168.	Find	all	combinations	by	replacing	given	digits	with	corresponding
list	charactersBacktracking,	StringHashing,	RecursiveHard169.	Find	all	words	that	follow	the	same	order	of	characters	as	given	patternStringAmazon,	HashingMedium170.	Group	anagrams	together	from	a	list	of	wordsSorting,	StringHashing,	MicrosoftMedium171.	Find	minimum	operations	required	to	transform	a	string	into	another	stringSorting,
StringHashingHard172.	Determine	whether	a	string	can	be	transformed	into	another	string	in	a	single	editStringMedium173.	Remove	all	occurrences	of	AB	and	C	from	a	stringStringEasy174.	Find	the	longest	even-length	palindromic	sum	substring	of	a	stringStringMedium175.	Print	string	in	the	zigzag	form	in	k	rowsStringMedium176.	Run	Length
Encoding	(RLE)	Data	Compression	AlgorithmStringAlgorithm,	Amazon,	Microsoft,	Must	KnowEasy177.	Find	the	longest	substring	of	a	string	containing	k	distinct	charactersStringHashing,	Sliding	WindowHard178.	Find	all	palindromic	permutations	of	a	stringSorting,	StringHashingMedium179.	Find	all	substrings	of	a	string	that	are	a	permutation	of
another	stringStringHashing,	Microsoft,	Sliding	WindowMedium180.	Find	the	longest	substring	of	a	string	containing	distinct	charactersStringAmazon,	Microsoft,	Sliding	WindowMedium181.	Find	all	permutations	of	a	string	C++,	Java,	PythonBacktracking,	StringAmazon,	Must	Know,	RecursiveHard182.	Iterative	approach	to	finding	permutations	of
a	stringJava,	Sorting,	StringHard183.	Find	all	lexicographically	next	permutations	of	a	stringSorting,	StringAmazon,	MicrosoftHard184.	Lexicographically	Minimal	String	RotationStringAlgorithmMedium185.	Find	all	strings	of	a	given	length	containing	balanced	parenthesesStringRecursiveMedium186.	Find	all	combinations	of	non-overlapping
substrings	of	a	stringBacktracking,	StringAmazon,	RecursiveMedium187.	Determine	whether	a	string	is	a	palindrome	or	notBasic,	StringRecursiveEasy188.	Find	the	minimum	number	of	inversions	needed	to	make	an	expression	balancedStringMedium189.	Construct	the	longest	palindrome	by	shuffling	or	deleting	characters	from	a
stringStringHashingMedium190.	Print	all	combinations	of	phrases	formed	by	picking	words	from	each	of	the	given	listsStringRecursiveMedium191.	Break	a	string	into	all	possible	combinations	of	non-overlapping	substringsStringRecursiveMedium192.	Convert	a	Roman	numeral	to	an	IntegerStringEasy193.	Remove	adjacent	duplicate	characters	from
a	stringStringRecursiveEasy194.	Find	the	first	non-repeating	character	in	a	string	by	doing	only	one	traversal	of	itStringHashingMedium195.	Find	all	n-digit	strictly	increasing	numbers	(Bottom-up	and	Top-down	approach)StringRecursiveMedium196.	Find	all	n-digit	binary	numbers	having	more	1s	than	0s	for	any	prefixStringRecursiveMedium197.
Find	all	n-digit	numbers	with	a	given	sum	of	digitsStringRecursiveHard198.	Find	all	n-digit	binary	numbers	with	k-bits	set	where	k	ranges	from	1	to	nStringHard199.	Find	all	n-digit	binary	numbers	with	an	equal	sum	of	bits	in	their	two	halvesStringRecursiveHard200.	Find	all	n-digit	numbers	with	equal	sum	of	digits	at	even	and	odd
indicesBacktracking,	StringRecursiveHard201.	Find	all	lexicographic	permutations	of	a	stringSorting,	StringRecursiveHard202.	Determine	if	a	string	is	a	subsequence	of	another	stringStringEasy203.	Find	all	lexicographically	previous	permutations	of	a	stringStringHard204.	Replace	all	non-overlapping	occurrences	of	a	patternStringMedium205.
Find	all	substrings	containing	exactly	k	distinct	charactersStringHashingMedium206.	Introduction	to	Pattern	MatchingStringMust	KnowBeginner207.	KMP	AlgorithmC,	C++,	Java,	StringAlgorithm,	Must	KnowTopAlgoHard208.	Reverse	a	string	using	recursionBasic,	StringRecursiveEasy209.	Determine	whether	the	characters	of	a	string	follow	a
specified	order	or	notStringMedium210.	Check	if	a	sentence	is	syntactically	correct	or	notStringMedium211.	Check	a	string	for	repeated	substringsStringEasy212.	Find	difference	between	two	stringsStringEasy213.	Construct	smallest	number	after	removing	k	digits	from	a	stringStringMedium214.	Number	to	word	conversionC++,	Java,	Python,
StringMicrosoft,	RecursiveHard215.	Find	all	occurrences	of	the	given	string	in	a	character	matrixBacktracking,	Matrix,	StringDepth-First	Search,	RecursiveHard216.	Shortest	Superstring	ProblemStringGreedyHard217.	Find	the	shortest	route	in	a	device	to	construct	a	given	stringMatrix,	StringMedium218.	Find	the	minimum	number	possible	by
doing	at-most	k	swapsBacktracking,	StringRecursiveMedium219.	Determine	whether	a	string	matches	with	a	given	patternBacktracking,	StringHashing,	RecursiveHard220.	Difference	between	Subarray,	Subsequence,	and	SubsetArray,	Basic,	StringMust	KnowBeginner221.	Determine	whether	two	strings	are	anagram	or	notStringHashingEasy222.
Bit	Hacks	Part	1	(Basic)Bit	ManipulationEasy223.	Bit	Hacks	Part	2	(Playing	with	kth	bit)Bit	ManipulationEasy224.	Bit	Hacks	Part	3	(Playing	with	the	rightmost	set	bit	of	a	number)Bit	ManipulationEasy225.	Bit	Hacks	Part	4	(Playing	with	letters	of	the	English	alphabet)Bit	ManipulationEasy226.	Bit	Hacks	Part	5	(Find	the	absolute	value	of	an	integer
without	branching)Bit	ManipulationEasy227.	Find	the	total	number	of	bits	needed	to	be	flippedBit	ManipulationEasy228.	Brian	Kernighans	Algorithm	to	count	set	bits	in	an	integerBit	ManipulationAlgorithm,	AmazonEasy229.	Round	up	to	the	next	highest	power	of	2Bit	ManipulationMedium230.	Round	up	to	the	previous	power	of	2Bit
ManipulationMedium231.	Compute	the	parity	of	a	number	using	a	lookup	tableBit	ManipulationHard232.	Count	set	bits	using	a	lookup	tableBit	ManipulationAmazonHard233.	Multiply	16-bit	integers	using	an	8-bit	multiplierBit	ManipulationMedium234.	Swap	two	bits	at	a	given	position	in	an	integerBit	ManipulationMedium235.	Swap	individual	bits
at	a	given	position	in	an	integerBit	ManipulationHard236.	Check	if	a	number	is	a	power	of	4	or	notBit	ManipulationMedium237.	Calculate	hamming	distance	between	two	integersBit	ManipulationEasy238.	Generate	an	array	with	the	set	bit	count	of	each	indexBit	ManipulationEasy239.	Reverse	bits	of	an	integerBit	ManipulationMedium240.	Print
binary	representation	of	a	numberBasic,	Bit	Manipulation,	C,	C++,	Java,	PythonRecursiveEasy241.	Add	binary	representation	of	two	integersBit	ManipulationEasy242.	Swap	adjacent	bits	of	a	numberBit	ManipulationMedium243.	Check	if	adjacent	bits	are	set	in	the	binary	representation	of	a	numberBit	ManipulationEasy244.	Reverse	bits	of	an	integer
using	a	lookup	tableBit	ManipulationHard245.	Circular	shift	on	the	binary	representation	of	an	integer	by	k	positionsBit	ManipulationMedium246.	Find	XOR	of	two	numbers	without	using	the	XOR	operatorBit	ManipulationMedium247.	Print	all	distinct	subsets	of	a	given	setArray,	Backtracking,	Bit	Manipulation,	SortingRecursiveTopLikedHard248.
Find	the	missing	number	in	an	arrayArray,	Bit	ManipulationEasy249.	Find	the	missing	number	in	an	array	without	using	any	extra	spaceArray,	Bit	ManipulationTopLikedEasy250.	Find	the	odd	occurring	element	in	an	array	in	a	single	traversalArray,	Bit	ManipulationHashingEasy251.	Find	two	odd	occurring	elements	in	an	array	without	using	any
extra	spaceArray,	Bit	ManipulationHashingMedium252.	Find	all	odd	occurring	elements	in	an	array	having	a	limited	range	of	elementsArray,	Bit	ManipulationMedium253.	Find	the	duplicate	element	in	a	limited	range	arrayArray,	Bit	ManipulationAmazon,	Hashing,	MicrosoftTopLikedMedium254.	Find	two	duplicate	elements	in	a	limited	range	array
(using	XOR)Array,	Bit	ManipulationHashingMedium255.	Find	the	missing	number	and	duplicate	elements	in	an	arrayArray,	Bit	ManipulationMedium256.	Stack	implementation	using	an	array	C,	C++,	C++	(Using	Templates),	Java,	PythonStackMust	KnowBeginner257.	Check	if	an	expression	is	balanced	or	notStack,	StringEasy258.	Find	duplicate
parenthesis	in	an	expressionStack,	StringAmazonMedium259.	Evaluate	a	postfix	expressionStack,	StringTopLikedEasy260.	Decode	a	given	sequence	to	construct	a	minimum	number	without	repeated	digitsStack,	StringAmazonHard261.	Design	a	stack	that	returns	the	minimum	element	in	constant	timeStackHard262.	Design	a	stack	that	returns	a
minimum	element	without	using	an	auxiliary	stackStackHard263.	Merging	Overlapping	IntervalsArray,	Sorting,	StackAlgorithm,	AmazonTopClassicMedium264.	Maximum	Overlapping	Intervals	ProblemArray,	SortingAlgorithmTopClassicMedium265.	Insert	an	interval	by	merging	overlapping	intervalsArrayMedium266.	Convert	an	infix	expression	into
a	postfix	expressionStack,	StringMedium267.	Implement	two	stacks	in	a	single	arrayStackEasy268.	Recursive	solution	to	sort	a	stackStackRecursiveHard269.	Reverse	a	stack	using	recursionStackRecursiveHard270.	Reverse	a	string	using	a	stack	data	structureStack,	StringRecursiveEasy271.	Find	the	next	greater	element	for	every	array
elementArray,	StackMedium272.	Find	the	next	greater	element	for	every	element	in	a	circular	arrayArray,	StackHard273.	Find	the	previous	smaller	element	for	each	array	elementArray,	StackMedium274.	Reverse	an	array	in	C++Array,	Basic,	C++,	StackRecursiveEasy275.	Longest	Increasing	Subsequence	ProblemArray,	StackAlgorithm,
AmazonTopClassicHard276.	Find	all	increasing	subsequences	of	an	arrayArray,	BacktrackingRecursiveMedium277.	Find	all	elements	in	an	array	that	are	greater	than	all	elements	to	their	rightArray,	StackEasy278.	Iterative	Implementation	of	QuicksortArray,	Divide	&	Conquer,	Sorting,	StackMedium279.	Find	all	binary	strings	that	can	be	formed
from	a	wildcard	patternBacktracking,	Stack,	StringRecursiveMedium280.	Find	the	length	of	the	longest	balanced	parenthesis	in	a	stringStack,	StringHard281.	Reverse	text	without	reversing	individual	wordsStack,	StringMedium282.	Evaluate	a	given	expressionString,	StackHard283.	Reverse	a	string	without	using	recursionBasic,	C++,	Java,	Stack,
StringEasy284.	Construct	a	string	from	an	encoded	sequenceString,	StackHard285.	Inorder	Tree	TraversalBinary	Tree,	StackAlgorithm,	Depth-First	Search,	Must	Know,	RecursiveTopLikedMedium286.	Preorder	Tree	TraversalBinary	Tree,	StackAlgorithm,	Depth-First	Search,	Must	Know,	RecursiveTopLikedMedium287.	Postorder	Tree
TraversalBinary	Tree,	StackAlgorithm,	Depth-First	Search,	Must	Know,	RecursiveTopLikedMedium288.	Level	order	traversal	of	a	binary	treeBinary	Tree,	QueueAlgorithm,	Amazon,	Breadth-First	Search,	Depth-First	Search,	Hashing,	Microsoft,	Must	Know,	RecursiveTopLikedEasy289.	Check	if	two	binary	trees	are	identical	or	notBinary	Tree,
StackAmazon,	Microsoft,	RecursiveTopLikedEasy290.	Print	bottom	view	of	a	binary	treeBinary	TreeAmazon,	Depth-First	Search,	Hashing,	RecursiveTopLikedMedium291.	Print	top	view	of	a	binary	treeBinary	TreeDepth-First	Search,	Hashing,	RecursiveTopLikedMedium292.	Calculate	the	height	of	a	binary	treeBinary	Tree,	QueueAmazon,	Breadth-
First	Search,	Depth-First	Search,	RecursiveEasy293.	Delete	a	binary	treeBinary	Tree,	QueueBreadth-First	Search,	Depth-First	Search,	RecursiveEasy294.	Spiral	order	traversal	of	a	binary	treeBinary	Tree,	QueueAlgorithm,	Amazon,	Breadth-First	Search,	Depth-First	Search,	Hashing,	Microsoft,	RecursiveTopLikedMedium295.	Reverse	level	order
traversal	of	a	binary	treeBinary	Tree,	Queue,	StackAlgorithm,	Amazon,	Breadth-First	Search,	Depth-First	Search,	Hashing,	Microsoft,	RecursiveEasy296.	In-place	convert	a	binary	tree	to	its	sum	treeBinary	TreeAmazon,	Depth-First	Search,	Microsoft,	RecursiveEasy297.	Determine	whether	the	given	binary	tree	nodes	are	cousins	of	each	otherBinary
TreeDepth-First	Search,	RecursiveMedium298.	Print	cousins	of	a	given	node	in	a	binary	treeBinary	TreeDepth-First	Search,	RecursiveMedium299.	Check	if	a	binary	tree	is	a	sum	tree	or	notBinary	TreeAmazon,	Depth-First	Search,	RecursiveMedium300.	Combinations	of	words	formed	by	replacing	given	numbers	with	corresponding	alphabetsArray,
Binary	Tree,	StringAmazon,	RecursiveHard301.	Determine	whether	a	binary	tree	is	a	subtree	of	another	binary	treeBinary	TreeDepth-First	Search,	RecursiveMedium302.	Find	the	diameter	of	a	binary	treeBinary	TreeAmazon,	Depth-First	Search,	Microsoft,	RecursiveTopLikedMedium303.	Check	if	a	binary	tree	is	symmetric	or	notBinary	TreeAmazon,
Microsoft,	RecursiveEasy304.	Convert	a	binary	tree	to	its	mirrorBinary	TreeDepth-First	Search,	RecursiveEasy305.	Determine	if	a	binary	tree	can	be	converted	to	another	by	swapping	childrenBinary	TreeRecursiveEasy306.	Find	the	Lowest	Common	Ancestor	(LCA)	of	two	nodes	in	a	binary	treeBinary	TreeAmazon,	Microsoft,
RecursiveTopLikedMedium307.	Print	all	paths	from	the	root	to	leaf	nodes	of	a	binary	treeBinary	Tree,	BacktrackingAmazon,	Depth-First	Search,	Microsoft,	RecursiveEasy308.	Find	ancestors	of	a	given	node	in	a	binary	treeBinary	Tree,	StackDepth-First	Search,	Hashing,	RecursiveTopLikedMedium309.	Find	distance	between	given	pairs	of	nodes	in	a
binary	treeBinary	TreeAmazon,	RecursiveHard310.	Find	the	diagonal	sum	of	a	binary	treeBinary	TreeDepth-First	Search,	Hashing,	RecursiveMedium311.	Sink	nodes	containing	zero	to	the	bottom	of	a	binary	treeBinary	TreeDepth-First	Search,	RecursiveHard312.	Convert	a	binary	tree	to	a	full	tree	by	removing	half	nodesBinary	TreeDepth-First
Search,	RecursiveMedium313.	Truncate	a	binary	tree	to	remove	nodes	that	lie	on	a	path	having	a	sum	less	than	kBinary	TreeAmazon,	Depth-First	Search,	RecursiveMedium314.	Find	maximum	sum	root	to	leaf	path	in	a	binary	treeBinary	TreeAmazon,	Depth-First	Search,	RecursiveMedium315.	Check	if	a	binary	tree	is	height-balanced	or	notBinary
TreeDepth-First	Search,	RecursiveMedium316.	Convert	binary	tree	to	Left-child	right-sibling	binary	treeBinary	TreeDepth-First	Search,	RecursiveMedium317.	Print	all	paths	from	leaf	to	root	node	of	a	binary	treeBinary	Tree,	BacktrackingDepth-First	Search,	RecursiveMedium318.	Iteratively	print	the	leaf	to	root	path	for	every	leaf	node	in	a	binary
treeBinary	Tree,	StackDepth-First	Search,	HashingMedium319.	Build	a	binary	tree	from	a	parent	arrayBinary	TreeAmazon,	Hashing,	MicrosoftTopLikedHard320.	Find	all	nodes	at	a	given	distance	from	leaf	nodes	in	a	binary	treeBinary	TreeDepth-First	Search,	RecursiveHard321.	Count	all	subtrees	having	the	same	value	of	nodes	in	a	binary
treeBinary	TreeDepth-First	Search,	RecursiveMedium322.	Find	the	maximum	difference	between	a	node	and	its	descendants	in	a	binary	treeBinary	TreeDepth-First	Search,	RecursiveMedium323.	Find	the	maximum	sum	path	between	two	leaves	in	a	binary	treeBinary	TreeRecursiveHard324.	Construct	a	binary	tree	from	inorder	and	preorder
traversalBinary	TreeDepth-First	Search,	Hashing,	RecursiveTopLikedHard325.	Construct	a	binary	tree	from	inorder	and	postorder	traversalsBinary	TreeDepth-First	Search,	Hashing,	RecursiveHard326.	Construct	a	binary	tree	from	inorder	and	level	order	sequenceBinary	TreeDepth-First	Search,	Hashing,	RecursiveHard327.	Construct	a	full	binary
tree	from	the	preorder	sequence	with	leaf	node	informationBinary	TreeDepth-First	Search,	RecursiveHard328.	Construct	a	full	binary	tree	from	a	preorder	and	postorder	sequenceBinary	TreeDepth-First	Search,	Hashing,	RecursiveHard329.	Find	postorder	traversal	of	a	binary	tree	from	its	inorder	and	preorder	sequenceBinary	TreeDepth-First
Search,	Hashing,	RecursiveMedium330.	Set	next	pointer	to	the	inorder	successor	of	all	nodes	in	a	binary	treeBinary	TreeDepth-First	Search,	RecursiveEasy331.	Find	preorder	traversal	of	a	binary	tree	from	its	inorder	and	postorder	sequenceBinary	Tree,	StackDepth-First	Search,	Hashing,	RecursiveHard332.	Find	difference	between	sum	of	all	nodes
present	at	odd	and	even	levels	in	a	binary	treeBinary	TreeRecursiveEasy333.	Clone	a	binary	treeBinary	TreeRecursiveEasy334.	Clone	a	binary	tree	with	random	pointersBinary	TreeDepth-First	Search,	Hashing,	RecursiveHard335.	Threaded	Binary	Tree	Overview	and	ImplementationBinary	TreeDepth-First	Search,	RecursiveMedium336.	Determine	if
a	binary	tree	satisfies	the	height-balanced	property	of	a	redblack	treeBinary	TreeDepth-First	Search,	RecursiveMedium337.	Construct	an	ancestor	matrix	from	a	binary	treeBinary	Tree,	MatrixDepth-First	Search,	RecursiveEasy338.	Find	all	possible	binary	trees	having	the	same	inorder	traversalBinary	TreeDepth-First	Search,	RecursiveHard339.
Perform	boundary	traversal	on	a	binary	treeBinary	TreeDepth-First	Search,	RecursiveMedium340.	Check	if	binary	representation	of	a	number	is	palindrome	or	notBit	ManipulationEasy341.	Check	if	each	node	of	a	binary	tree	has	exactly	one	childBinary	TreeDepth-First	Search,	RecursiveEasy342.	Evaluate	a	Binary	Expression	TreeBinary	TreeDepth-
First	Search,	RecursiveEasy343.	Construction	of	an	expression	treeBinary	Tree,	StackDepth-First	Search,	RecursiveEasy344.	Fix	children-sum	property	in	a	binary	treeBinary	TreeDepth-First	Search,	RecursiveMedium345.	Maximum	path	sum	in	a	binary	treeBinary	TreeAlgorithm,	RecursiveHard346.	Create	a	mirror	of	an	mary	treeBinary	TreeDepth-
First	Search,	RecursiveEasy347.	Print	a	two-dimensional	view	of	a	binary	treeBinary	TreeDepth-First	Search,	RecursiveEasy348.	Construct	a	binary	tree	from	an	ancestor	matrixBinary	Tree,	MatrixHashingHard349.	Insertion	in	a	BSTBSTAlgorithm,	Amazon,	Microsoft,	Must	Know,	RecursiveTopLikedEasy350.	Search	a	given	key	in	BSTBSTAlgorithm,
Must	Know,	RecursiveTopLikedEasy351.	Deletion	from	BST	(Binary	Search	Tree)BSTAlgorithm,	Amazon,	Must	Know,	RecursiveTopLikedMedium352.	Construct	a	balanced	BST	from	the	given	keysBST,	SortingAmazon,	RecursiveEasy353.	Determine	whether	a	given	binary	tree	is	a	BST	or	notBinary	Tree,	BSTAmazon,	Depth-First	Search,	Microsoft,
RecursiveTopLikedMedium354.	Check	if	the	given	keys	represent	the	same	BSTs	or	not	without	building	BSTBSTRecursiveHard355.	Find	inorder	predecessor	for	the	given	key	in	a	BSTBSTRecursiveMedium356.	Find	the	Lowest	Common	Ancestor	(LCA)	of	two	nodes	in	a	BSTBSTAmazon,	RecursiveEasy357.	Find	kth	smallest	node	in	a	BSTBSTDepth-
First	Search,	RecursiveEasy358.	Find	kth	largest	node	in	a	BSTBSTDepth-First	Search,	RecursiveTopLikedEasy359.	Find	floor	and	ceil	in	a	Binary	Search	TreeBSTRecursiveMedium360.	Convert	a	binary	tree	to	BST	by	maintaining	its	original	structureBSTDepth-First	Search,	RecursiveMedium361.	Remove	nodes	from	a	BST	that	have	keys	outside	a
valid	rangeBSTDepth-First	Search,	RecursiveMedium362.	Find	a	pair	with	the	given	sum	in	a	BSTBSTDepth-First	Search,	Hashing,	RecursiveEasy363.	Find	inorder	successor	for	the	given	key	in	a	BSTBinary	Tree,	BSTRecursiveTopLikedMedium364.	Replace	every	array	element	with	the	least	greater	element	on	its	rightArray,	BSTMedium365.	Fix	a
binary	tree	that	is	only	one	swap	away	from	becoming	a	BSTBinary	Tree,	BSTDepth-First	Search,	RecursiveHard366.	Update	every	key	in	a	BST	to	contain	the	sum	of	all	greater	keysBSTDepth-First	Search,	RecursiveMedium367.	Check	if	a	given	sequence	represents	the	preorder	traversal	of	a	BSTBSTDepth-First	Search,	RecursiveHard368.	Build	a
Binary	Search	Tree	from	a	postorder	sequenceBSTDepth-First	Search,	RecursiveHard369.	Build	a	Binary	Search	Tree	from	a	preorder	sequenceBSTDepth-First	Search,	RecursiveTopLikedHard370.	Count	subtrees	in	a	BST	whose	nodes	lie	within	a	given	rangeBSTDepth-First	Search,	RecursiveMedium371.	Find	the	size	of	the	largest	BST	in	a	binary
treeBinary	Tree,	BSTDepth-First	Search,	RecursiveHard372.	Calculate	sum	of	root	to	leaf	digits	in	a	binary	treeBinary	Tree,	QueueRecursiveMedium373.	Count	paths	with	the	given	sum	in	a	binary	treeBinary	TreeRecursive,	HashingHard374.	Print	complete	Binary	Search	Tree	(BST)	in	increasing	orderArray,	BST,	StackDepth-First	Search,
RecursiveEasy375.	Print	binary	tree	structure	with	its	contentsBinary	Tree,	BSTRecursiveMedium376.	Binary	Search	AlgorithmArray,	Divide	&	ConquerAlgorithm,	Binary	Search,	Must	Know,	RecursiveTopAlgoEasy377.	Find	the	number	of	rotations	in	a	circularly	sorted	arrayArray,	Divide	&	ConquerAmazon,	Binary	Search,
RecursiveTopLikedEasy378.	Search	an	element	in	a	circularly	sorted	arrayArray,	Divide	&	ConquerAmazon,	Binary	Search,	MicrosoftMedium379.	Find	the	first	or	last	occurrence	of	a	given	number	in	a	sorted	arrayArray,	Divide	&	ConquerBinary	SearchTopLikedEasy380.	Count	occurrences	of	a	number	in	a	sorted	array	with	duplicatesArray,	Divide
&	ConquerBinary	SearchTopLikedMedium381.	Find	the	smallest	missing	element	from	a	sorted	arrayArray,	Divide	&	ConquerBinary	Search,	RecursiveMedium382.	Find	floor	and	ceil	of	a	number	in	a	sorted	integer	arrayArray,	Divide	&	ConquerAmazon,	Binary	SearchEasy383.	Search	in	a	nearly	sorted	array	in	logarithmic	timeArray,	Divide	&
ConquerBinary	SearchMedium384.	Find	the	number	of	1s	in	a	sorted	binary	arrayArray,	Divide	&	ConquerBinary	Search,	RecursiveEasy385.	Find	the	peak	element	in	an	arrayArray,	Divide	&	ConquerAmazon,	Binary	Search,	RecursiveTopLikedMedium386.	Maximum	Subarray	Sum	using	Divide	and	ConquerArray,	Divide	&	ConquerAlgorithm,
RecursiveTopLikedMedium387.	Efficiently	implement	power	functionBit	Manipulation,	Divide	&	ConquerRecursiveEasy388.	Find	the	missing	term	in	a	sequence	in	logarithmic	timeArray,	Divide	&	ConquerBinary	SearchMedium389.	Find	floor	and	ceil	of	a	number	in	a	sorted	array	(Recursive	solution)Array,	Divide	&	ConquerAmazon,	Binary	Search,
RecursiveEasy390.	Find	the	frequency	of	each	element	in	a	sorted	array	containing	duplicatesArray,	Divide	&	ConquerBinary	Search,	Hashing,	RecursiveEasy391.	Find	the	square	root	of	a	number	using	a	binary	searchDivide	&	ConquerBinary	SearchEasy392.	Division	of	two	numbers	using	binary	search	algorithmDivide	&	ConquerAmazon,	Binary
SearchMedium393.	Find	the	odd	occurring	element	in	an	array	in	logarithmic	timeArray,	Bit	Manipulation,	Divide	&	Conquer,	SortingBinary	Search,	RecursiveMedium394.	Find	pairs	with	difference	k	in	an	array	|	Constant	Space	SolutionArray,	Divide	&	Conquer,	SortingBinary	Search,	HashingMedium395.	Find	k	closest	elements	to	a	given	value	in
an	arrayArray,	Divide	&	ConquerBinary	SearchMedium396.	Find	the	maximum	value	of	j	i	such	that	A[j]	>	A[i]	in	an	arrayArrayMedium397.	Longest	Common	Prefix	(LCP)	ProblemDivide	&	Conquer,	StringAlgorithm,	RecursiveTopClassicEasy398.	Binary	Search	in	C++	STL	and	Java	CollectionsArray,	C++,	Divide	&	Conquer,	JavaAlgorithm,	Binary
SearchBeginner399.	Ternary	Search	vs	Binary	searchArray,	Divide	&	ConquerAlgorithm,	Binary	SearchBeginner400.	Exponential	searchArray,	Divide	&	ConquerAlgorithm,	Binary	Search,	RecursiveTopAlgoEasy401.	Unbounded	Binary	SearchDivide	&	ConquerAlgorithm,	Binary	Search,	RecursiveEasy402.	Interpolation	searchArray,	Divide	&
ConquerAlgorithmEasy403.	Introduction	to	Dynamic	ProgrammingDynamic	ProgrammingBottom-up,	Recursive,	Top-down,	Must	KnowBeginner404.	Longest	Common	Subsequence	ProblemDynamic	Programming,	StringAlgorithm,	Amazon,	Bottom-up,	Recursive,	Top-downTopClassic,	TopLiked,	TopDPMedium405.	Longest	Common	Subsequence
(LCS)	|	Space	optimized	versionDynamic	Programming,	StringAmazon,	Bottom-upMedium406.	Longest	Common	Subsequence	of	ksequencesDynamic	Programming,	StringAlgorithm,	Bottom-up,	Recursive,	Top-downMedium407.	Longest	Common	Subsequence	|	Finding	all	LCSDynamic	Programming,	StringAmazon,	Bottom-up,	Recursive,	Top-
downHard408.	Longest	Common	Substring	ProblemDynamic	Programming,	StringAlgorithm,	Bottom-upTopClassic,	TopLikedMedium409.	Longest	Palindromic	Subsequence	using	Dynamic	ProgrammingDynamic	Programming,	StringAlgorithm,	Bottom-up,	Microsoft,	Recursive,	Top-downTopClassic,	TopLikedMedium410.	Longest	Repeated
Subsequence	ProblemDynamic	Programming,	StringAlgorithm,	Bottom-up,	Recursive,	Top-downTopClassic,	TopLikedMedium411.	Implement	Diff	UtilityDynamic	Programming,	StringAlgorithm,	Recursive,	Bottom-up,	Top-downMedium412.	Shortest	Common	Supersequence	ProblemDynamic	Programming,	StringAlgorithm,	Bottom-up,	Recursive,	Top-
downTopClassic,	TopLiked,	TopDPMedium413.	Shortest	Common	Supersequence	|	Finding	all	SCSDynamic	Programming,	StringBottom-up,	Recursive,	Top-downHard414.	Shortest	Common	Supersequence	Problem	using	LCSDynamic	Programming,	StringRecursive,	Bottom-up,	Top-downHard415.	Longest	Increasing	Subsequence	using	Dynamic
ProgrammingArray,	Dynamic	ProgrammingAlgorithm,	Amazon,	Bottom-up,	Recursive,	Top-downTopLiked,	TopDPHard416.	Longest	Decreasing	Subsequence	ProblemArray,	Dynamic	ProgrammingAlgorithm,	Bottom-up,	Recursive,	Top-downHard417.	Longest	Bitonic	SubsequenceArray,	Dynamic	ProgrammingAlgorithm,	Bottom-upMedium418.
Maximum	Sum	Increasing	Subsequence	ProblemArray,	Dynamic	ProgrammingAlgorithm,	Amazon,	Bottom-up,	Recursive,	Top-downMedium419.	The	Levenshtein	distance	(Edit	distance)	ProblemDynamic	Programming,	StringAlgorithm,	Amazon,	Bottom-up,	Recursive,	Top-downTopClassic,	TopLiked,	TopDPMedium420.	Find	the	size	of	the	largest
square	submatrix	of	1s	present	in	a	binary	matrixDynamic	Programming,	MatrixAmazon,	Bottom-up,	Recursive,	Top-downTopLikedMedium421.	Matrix	Chain	Multiplication	using	Dynamic	ProgrammingArray,	Dynamic	Programming,	MatrixAlgorithm,	Bottom-up,	Recursive,	Top-downTopClassic,	TopLiked,	TopDPHard422.	Find	minimum	cost	to	reach
the	last	cell	of	a	matrix	from	its	first	cellDynamic	Programming,	MatrixBottom-up,	Recursive,	Top-downTopLikedMedium423.	Find	the	longest	sequence	formed	by	adjacent	numbers	in	the	matrixDynamic	Programming,	MatrixRecursive,	Top-downMedium424.	Count	the	number	of	paths	in	a	matrix	with	a	given	cost	to	reach	the	destination
cellDynamic	Programming,	MatrixMicrosoft,	Recursive,	Top-downMedium425.	01	Knapsack	ProblemArray,	Dynamic	ProgrammingAlgorithm,	Amazon,	Bottom-up,	Recursive,	Top-downTopClassic,	TopLiked,	TopDPMedium426.	Maximize	the	value	of	an	expressionArray,	Dynamic	ProgrammingBottom-upHard427.	Partition	Problem	using	Dynamic
ProgrammingArray,	Dynamic	ProgrammingAlgorithm,	Bottom-up,	Recursive,	Top-downTopClassic,	TopLiked,	TopDPMedium428.	Subset	Sum	Problem	Dynamic	Programming	SolutionArray,	Dynamic	ProgrammingAlgorithm,	Amazon,	Bottom-up,	Recursive,	Top-downTopClassic,	TopLikedMedium429.	3Partition	ProblemArray,	Dynamic
ProgrammingAlgorithm,	Hashing,	Recursive,	Top-downTopClassic,	TopLikedMedium430.	Minimum	Sum	Partition	ProblemArray,	Dynamic	ProgrammingAlgorithm,	Amazon,	Bottom-up,	Recursive,	Top-downTopClassic,	TopLikedHard431.	Rod	Cutting	ProblemArray,	Dynamic	ProgrammingAlgorithm,	Bottom-up,	Recursive,	Top-downTopClassic,
TopLiked,	TopDPMedium432.	Maximum	Product	Rod	CuttingDynamic	ProgrammingAlgorithm,	Bottom-up,	Recursive,	Top-downTopClassicMedium433.	Coin	change-making	problemArray,	Dynamic	ProgrammingAlgorithm,	Bottom-up,	Recursive,	Top-downTopDPMedium434.	Coin	Change	ProblemArray,	Dynamic	ProgrammingAlgorithm,	Bottom-up,
Recursive,	Top-downTopClassicHard435.	Total	possible	solutions	to	a	linear	equation	of	k	variablesDynamic	ProgrammingBottom-up,	Recursive,	Top-downHard436.	Longest	Alternating	Subsequence	ProblemArray,	Dynamic	ProgrammingAlgorithm,	Bottom-up,	Recursive,	Top-downTopClassicMedium437.	Longest	Alternating	Subsequence	Problem
IIArray,	Dynamic	ProgrammingMedium438.	Count	the	number	of	times	a	pattern	appears	in	a	given	string	as	a	subsequenceDynamic	Programming,	StringBottom-up,	Recursive,	Top-downHard439.	Collect	maximum	points	in	a	matrix	by	satisfying	given	constraintsDynamic	Programming,	MatrixBottom-up,	Recursive,	Top-downHard440.	Find	all	n-digit
binary	numbers	without	any	consecutive	1sDynamic	ProgrammingBottom-up,	Microsoft,	Recursive,	Top-downEasy441.	Count	total	possible	combinations	of	n-digit	numbers	in	a	mobile	keypadDynamic	ProgrammingAmazon,	Bottom-up,	Recursive,	Top-downMedium442.	Word	Break	Problem	Dynamic	ProgrammingDynamic	Programming,
StringAlgorithm,	Amazon,	Recursive,	Top-downTopClassic,	TopLiked,	TopDPHard443.	Determine	the	minimal	adjustment	cost	of	an	arrayDynamic	ProgrammingBottom-upHard444.	Check	if	a	string	is	kpalindrome	or	notDynamic	Programming,	StringBottom-up,	Recursive,	Top-downHard445.	Find	total	ways	to	achieve	a	given	sum	with	n	throws	of
dice	having	k	facesDynamic	ProgrammingRecursive,	Top-downMedium446.	Wildcard	Pattern	MatchingDynamic	Programming,	StringAlgorithm,	Amazon,	Recursive,	Top-down,	Bottom-upTopClassic,	TopLikedHard447.	Find	the	number	of	ways	to	fill	an	N	4	matrix	with	1	4	tilesDynamic	Programming,	MatrixBottom-up,	Recursive,	Top-
downMedium448.	Ways	to	reach	the	bottom-right	corner	of	a	matrix	with	exactly	k	turns	allowedDynamic	Programming,	MatrixRecursiveHard449.	Weighted	Interval	Scheduling	ProblemArray,	Dynamic	Programming,	SortingAlgorithm,	Bottom-up,	Recursive,	Top-downTopClassicMedium450.	Box	Stacking	ProblemArray,	Dynamic	Programming,
SortingAlgorithm,	Bottom-upTopClassicHard451.	Find	total	ways	to	reach	nth	stair	with	at-most	m	stepsDynamic	ProgrammingBottom-up,	Recursive,	Top-downMedium452.	Find	total	ways	to	reach	the	nth	stair	from	the	bottomDynamic	ProgrammingBottom-up,	Recursive,	Top-downMedium453.	Activity	Selection	Problem	using	Dynamic
ProgrammingArray,	Dynamic	Programming,	SortingAlgorithm,	Bottom-upMedium454.	Find	the	minimum	number	of	deletions	required	to	convert	a	string	into	a	palindromeDynamic	Programming,	StringBottom-up,	Recursive,	Top-downTopLikedMedium455.	Calculate	the	minimum	cost	to	reach	the	destination	city	from	the	source	cityDynamic
Programming,	MatrixBottom-upMedium456.	Pots	of	Gold	Game	Problem	using	Dynamic	ProgrammingDynamic	ProgrammingAlgorithm,	Amazon,	Bottom-up,	Recursive,	Top-downTopClassicHard457.	Find	minimum	cuts	needed	for	the	palindromic	partition	of	a	stringDynamic	Programming,	StringBottom-up,	Recursive,	Top-downHard458.	Weighted
Interval	Scheduling	Dynamic	Programming	SolutionArray,	Dynamic	Programming,	SortingAlgorithm,	Bottom-upMedium459.	Find	minimum	jumps	required	to	reach	the	destinationArray,	Dynamic	ProgrammingBottom-up,	Recursive,	Top-downMedium460.	Find	the	probability	that	a	person	is	alive	after	taking	n	steps	on	an	islandDynamic
Programming,	MatrixHashing,	Recursive,	Top-downMedium461.	Maximum	Length	Snake	SequenceDynamic	Programming,	MatrixAlgorithmMedium462.	Calculate	the	size	of	the	largest	plus	of	1s	in	a	binary	matrixDynamic	Programming,	MatrixBottom-upHard463.	Longest	Increasing	Subsequence	using	LCSDynamic	Programming,	SortingAlgorithm,
Bottom-up,	Recursive,	Top-downMedium464.	Find	maximum	profit	earned	from	at	most	k	stock	transactionsArray,	Dynamic	ProgrammingBottom-upHard465.	Count	all	paths	in	a	matrix	from	the	first	cell	to	the	last	cellDynamic	Programming,	MatrixBottom-up,	Recursive,	Top-downEasy466.	Check	if	a	string	matches	with	the	given	wildcard
patternDynamic	Programming,	StringAmazon,	Recursive,	Top-down,	Bottom-upHard467.	Check	if	a	string	is	interleaving	of	two	other	given	stringsDynamic	Programming,	StringBottom-up,	Recursive,	Top-downMedium468.	Find	all	employees	who	directly	or	indirectly	reports	to	a	managerDynamic	ProgrammingHashing,	Microsoft,	RecursiveHard469.
Find	optimal	cost	to	construct	a	binary	search	treeBST,	Dynamic	ProgrammingBottom-up,	Recursive,	Top-downHard470.	Find	the	maximum	sum	of	a	subsequence	with	no	adjacent	elementsArray,	Dynamic	ProgrammingBottom-up,	Recursive,	Top-downTopLikedMedium471.	Minimum-weight	triangulation	of	a	convex	polygonArray,	Dynamic
ProgrammingAlgorithm,	Bottom-up,	Recursive,	Top-downHard472.	Find	maximum	profit	that	can	be	earned	by	conditionally	selling	stocksArray,	Dynamic	ProgrammingBottom-up,	Recursive,	Top-downEasy473.	Program	to	find	nth	Fibonacci	numberBasic,	Dynamic	ProgrammingRecursive,	Top-down,	Bottom-upEasy474.	Count	decodings	of	a	given
sequence	of	digitsDynamic	ProgrammingBottom-up,	Recursive,	Top-downMedium475.	Hat	Check	Problem	Counting	DerangementsDynamic	ProgrammingAlgorithm,	Bottom-up,	Recursive,	Top-downTopClassicMedium476.	Maximum	Independent	Set	ProblemBinary	Tree,	Dynamic	ProgrammingAlgorithm,	Recursive,	Top-downTopClassicMedium477.
Find	the	minimum	number	of	squares	that	sum	to	a	given	numberDynamic	ProgrammingBottom-up,	Recursive,	Top-downMedium478.	Truncate	an	integer	array	such	that	2min	becomes	more	than	maxArray,	Dynamic	ProgrammingBottom-up,	Recursive,	Top-downHard479.	Longest	Alternating	Subarray	ProblemArray,	Dynamic	ProgrammingAlgorithm,
Bottom-upTopClassicEasy480.	Find	maximum	profit	earned	from	at	most	two	stock	transactionsArray,	Dynamic	ProgrammingBottom-upHard481.	Find	ways	to	calculate	a	target	from	elements	of	the	specified	arrayArray,	Backtracking,	Dynamic	ProgrammingRecursive,	Top-downMedium482.	Calculate	the	sum	of	all	elements	in	a	submatrix	in	constant
timeDynamic	Programming,	MatrixBottom-upMedium483.	Find	maximum	sum	K	K	submatrix	in	a	given	M	N	matrixDynamic	Programming,	MatrixBottom-upHard484.	Find	maximum	sum	submatrix	present	in	a	matrixDynamic	Programming,	MatrixBottom-upTopClassic,	TopLikedMedium485.	Find	the	length	of	the	longest	path	in	a	matrix	with
consecutive	charactersDynamic	Programming,	MatrixDepth-First	Search,	RecursiveMedium486.	Collect	maximum	value	of	coins	in	a	matrixDynamic	Programming,	MatrixRecursiveHard487.	Terminology	and	Representations	of	GraphsGraphMust	KnowBeginner488.	Graph	Implementation	C,	C++,	C++	STL,	Java	Collections,	PythonGraphMust
KnowBeginner489.	Depth	First	Search	(DFS)Graph,	StackAlgorithm,	Amazon,	Depth-First	Search,	Must	Know,	RecursiveTopAlgoMedium490.	Breadth-First	Search	(BFS)GraphAlgorithm,	Amazon,	Breadth-First	Search,	Microsoft,	Must	Know,	RecursiveTopAlgoMedium491.	Arrival	and	departure	time	of	vertices	in	DFSGraphDepth-First	Search,	Must
Know,	RecursiveEasy492.	Types	of	edges	involved	in	DFS	and	relation	between	themGraphDepth-First	Search,	Must	KnowBeginner493.	Determine	whether	a	graph	is	Bipartite	using	DFSGraphDepth-First	Search,	RecursiveMedium494.	Topological	Sort	Algorithm	for	DAGGraphAlgorithm,	Amazon,	Depth-First	Search,	Microsoft,	Must	Know,
RecursiveMedium495.	Kahns	Topological	Sort	AlgorithmGraphAlgorithmTopAlgoMedium496.	Transitive	closure	of	a	graphGraph,	MatrixAlgorithm,	Breadth-First	Search,	Depth-First	Search,	RecursiveEasy497.	Determine	whether	an	undirected	graph	is	a	tree	(Acyclic	Connected	Graph)GraphDepth-First	Search,	RecursiveMedium498.	2Edge
Connectivity	in	a	graphGraphAlgorithm,	Depth-First	Search,	RecursiveHard499.	2Vertex	Connectivity	in	a	graphGraphDepth-First	SearchHard500.	Check	if	a	digraph	is	a	DAG	(Directed	Acyclic	Graph)	or	notGraphDepth-First	Search,	RecursiveMedium501.	DisjointSet	Data	Structure	(UnionFind	Algorithm)GraphAlgorithm,
RecursiveTopAlgoMedium502.	Check	if	a	graph	is	strongly	connected	or	notGraphBreadth-First	Search,	Depth-First	Search,	RecursiveEasy503.	Check	if	a	graph	is	strongly	connected	or	not	using	one	DFS	TraversalGraphDepth-First	Search,	RecursiveHard504.	UnionFind	Algorithm	for	cycle	detection	in	a	graphGraphAlgorithm,	Amazon,
RecursiveMedium505.	Single-Source	Shortest	Paths	BellmanFord	AlgorithmDynamic	Programming,	GraphAlgorithm,	Bottom-up,	Must	Know,	RecursiveTopAlgoMedium506.	All-Pairs	Shortest	Paths	Floyd	Warshall	AlgorithmDynamic	Programming,	Graph,	MatrixAlgorithm,	Bottom-up,	Must	Know,	RecursiveTopAlgoEasy507.	Find	the	cost	of	the
shortest	path	in	DAG	using	one	pass	of	BellmanFordGraphDepth-First	Search,	RecursiveMedium508.	Determine	a	negative-weight	cycle	in	a	graphDynamic	Programming,	Graph,	MatrixMedium509.	Find	all	Possible	Topological	Orderings	of	a	DAGBacktracking,	GraphRecursiveHard510.	Find	correct	order	of	alphabets	in	a	given	dictionary	of	ancient
originGraph,	StringDepth-First	Search,	Hashing,	RecursiveHard511.	Find	the	longest	path	in	a	Directed	Acyclic	Graph	(DAG)GraphDepth-First	Search,	RecursiveHard512.	Print	all	kcolorable	configurations	of	a	graph	(Vertex	coloring	of	a	graph)Backtracking,	GraphAlgorithm,	RecursiveMedium513.	Print	all	Hamiltonian	paths	present	in	a
graphBacktracking,	GraphRecursiveHard514.	Graph	Coloring	ProblemGraphAlgorithm,	Greedy,	HashingTopClassicMedium515.	Kruskals	Algorithm	for	finding	Minimum	Spanning	TreeGraph,	SortingAlgorithm,	Amazon,	Greedy,	Must	Know,	RecursiveTopAlgoHard516.	Eulerian	cycle	in	directed	graphsGraphAlgorithm,	Depth-First	Search,
RecursiveHard517.	Find	root	vertex	of	a	graphGraphBreadth-First	Search,	Depth-First	Search,	RecursiveMedium518.	Check	whether	an	undirected	graph	is	EulerianGraphAlgorithm,	Depth-First	Search,	RecursiveMedium519.	Check	if	a	set	of	words	can	be	rearranged	to	form	a	circleGraphDepth-First	Search,	RecursiveHard520.	Find	itinerary	from
the	given	list	of	departure	and	arrival	airportsArray,	GraphHashing,	RecursiveEasy521.	Introduction	to	Priority	Queues	using	Binary	HeapsArray,	HeapPriority	Queue,	Must	KnowBeginner522.	Min	Heap	and	Max	Heap	Implementation	C++,	JavaHeapMust	KnowBeginner523.	Check	if	an	array	represents	a	min-heap	or	notArray,
HeapRecursiveMedium524.	Convert	max	heap	to	min	heap	in	linear	timeArray,	HeapRecursiveEasy525.	Find	kth	largest	element	in	an	arrayArray,	HeapAmazon,	Priority	QueueTopLikedMedium526.	Sort	a	k-sorted	arrayArray,	HeapPriority	QueueMedium527.	Merge	M	sorted	lists	of	variable	lengthArray,	Heap,	SortingAmazon,	Priority
QueueHard528.	Find	kth	smallest	element	in	an	arrayArray,	HeapPriority	QueueTopLikedMedium529.	Find	the	smallest	range	with	at	least	one	element	from	each	of	the	given	listsArray,	HeapPriority	QueueHard530.	Merge	M	sorted	lists	each	containing	N	elementsArray,	Heap,	Matrix,	SortingAmazon,	Priority	QueueHard531.	Find	first	k	non-
repeating	characters	in	a	string	in	a	single	traversalHeap,	StringAmazon,	Hashing,	Priority	QueueMedium532.	Connect	n	ropes	with	minimal	costArray,	HeapPriority	QueueEasy533.	Return	kth	largest	element	in	a	streamHeapPriority	QueueMedium534.	Huffman	Coding	Compression	AlgorithmBit	Manipulation,	Binary	Tree,	HeapAlgorithm,	Greedy,
Priority	QueueTopAlgoHard535.	Replace	each	array	element	by	its	corresponding	rankArray,	HeapHashing,	Priority	QueueEasy536.	Single-Source	Shortest	Paths	Dijkstras	AlgorithmGraph,	HeapAlgorithm,	Greedy,	Must	Know,	Priority	QueueTopAlgoMedium537.	Construct	a	Cartesian	tree	from	an	inorder	traversalBinary	Tree,	HeapDepth-First
Search,	RecursiveMedium538.	Treap	Data	StructureBST,	HeapRecursiveBeginner539.	Implementation	of	Treap	Data	Structure	(Insert,	Search,	and	Delete)BST,	HeapRecursiveHard540.	Heap	Sort	AlgorithmArray,	C,	C++,	Heap,	Java,	SortingAlgorithm,	Must	Know,	Priority	Queue,	RecursiveTopAlgoMedium541.	Introsort	Algorithm	Overview	and	C++
ImplementationArray,	Divide	&	Conquer,	Heap,	SortingAlgorithm,	Priority	Queue,	RecursiveHard542.	External	Merge	Sort	AlgorithmArray,	Heap,	SortingAlgorithm,	Priority	QueueHard543.	Introduction	to	Linked	ListsLinked	ListMust	KnowBeginner544.	Linked	List	Implementation	C,	C++,	Java,	PythonLinked	ListMust	KnowBeginner545.	Linked	List
Insertion	at	TailLinked	ListMust	KnowBeginner546.	Static	Linked	ListC,	Linked	ListBeginner547.	Clone	a	Linked	ListLinked	ListRecursiveEasy548.	Delete	a	linked	listLinked	ListRecursiveEasy549.	Pop	operation	in	a	linked	listLinked	ListEasy550.	Insert	a	node	to	its	correct	sorted	position	in	a	sorted	linked	listLinked	ListAmazonTopLikedEasy551.
Rearrange	linked	list	in	increasing	order	(Sort	linked	list)Linked	ListTopLikedMedium552.	Split	nodes	of	a	linked	list	into	the	front	and	back	halvesLinked	ListEasy553.	Remove	duplicates	from	a	sorted	linked	listLinked	ListMicrosoftEasy554.	Move	the	front	node	of	a	linked	list	in	front	of	another	listLinked	ListEasy555.	Move	even	nodes	to	the	end	of
the	linked	list	in	reverse	orderLinked	ListAmazonMedium556.	Split	a	linked	list	into	two	lists	where	each	list	contains	alternating	elements	from	itLinked	ListRecursiveMedium557.	Construct	a	linked	list	by	merging	alternate	nodes	of	two	given	listsLinked	ListAmazon,	RecursiveEasy558.	Merge	two	sorted	linked	lists	into	oneLinked	ListAmazon,
Microsoft,	RecursiveTopLikedMedium559.	Efficiently	merge	k	sorted	linked	listsDivide	&	Conquer,	Heap,	Linked	ListPriority	Queue,	RecursiveHard560.	Intersection	of	two	sorted	linked	listsLinked	ListAmazon,	MicrosoftMedium561.	Reverse	a	linked	List	Iterative	SolutionLinked	ListMicrosoft,	Must	KnowMedium562.	Reverse	a	Linked	List	Recursive
SolutionLinked	ListMicrosoft,	Must	Know,	RecursiveHard563.	Reverse	every	group	of	k	nodes	in	a	linked	listLinked	ListAmazon,	Microsoft,	RecursiveMedium564.	Find	kth	node	from	the	end	of	a	linked	listLinked	ListAmazon,	RecursiveEasy565.	Merge	alternate	nodes	of	two	linked	lists	into	the	first	listLinked	ListRecursiveMedium566.	Merge	two
sorted	linked	lists	from	their	endLinked	List,	SortingMicrosoftMedium567.	Delete	every	N	nodes	in	a	linked	list	after	skipping	M	nodesLinked	ListAmazon,	RecursiveEasy568.	Rearrange	linked	list	in	a	specific	manner	in	linear	timeLinked	ListAmazon,	RecursiveMedium569.	Check	if	a	linked	list	is	palindrome	or	notLinked
ListRecursiveTopLikedMedium570.	Move	the	last	node	to	the	front	of	a	linked	listLinked	ListRecursiveEasy571.	Rearrange	linked	list	in	a	specific	mannerLinked	ListEasy572.	Floyds	Cycle	Detection	AlgorithmLinked	ListAlgorithm,	Amazon,	Hashing,	Microsoft,	Must	KnowTopAlgoEasy573.	Find	start	node	of	the	cycle	in	a	linked	listLinked
ListMedium574.	Sort	linked	list	containing	0s,	1s,	and	2s	in	a	single	traversalLinked	ListMicrosoftMedium575.	Remove	duplicates	from	a	linked	list	in	a	single	traversalLinked	ListHashingEasy576.	Rearrange	linked	list	so	that	it	has	alternating	high	and	low	valuesLinked	ListMedium577.	Rearrange	a	linked	list	by	separating	odd	nodes	from	even
onesLinked	ListRecursiveMedium578.	Calculate	height	of	a	binary	tree	with	leaf	nodes	forming	a	circular	doubly	linked	listBinary	Tree,	Linked	ListDepth-First	Search,	RecursiveMedium579.	XOR	Linked	List	Overview	and	Implementation	in	C/C++Bit	Manipulation,	C,	C++,	Linked	ListAlgorithm,	Must	KnowMedium580.	Recursively	check	if	the	linked
list	of	characters	is	palindrome	or	notLinked	ListRecursiveMedium581.	Merge	two	BSTs	into	a	doubly-linked	list	in	sorted	orderBST,	Linked	ListDepth-First	Search,	RecursiveHard582.	Remove	redundant	nodes	from	a	path	formed	by	a	linked	listLinked	ListMedium583.	Add	a	single-digit	number	to	a	linked	list	representing	a	numberLinked
ListRecursiveMedium584.	Reverse	every	alternate	group	of	k	nodes	in	a	linked	listLinked	ListRecursiveMedium585.	Determine	whether	a	linked	list	is	palindrome	or	notLinked	ListRecursiveMedium586.	Reverse	a	doubly	linked	listLinked	ListRecursiveEasy587.	Pairwise	swap	adjacent	nodes	of	a	linked	listLinked	ListRecursiveMedium588.	Flatten	a
Linked	ListLinked	ListRecursiveHard589.	Check	if	a	linked	list	of	strings	is	palindromicLinked	List,	StringRecursiveEasy590.	Flatten	a	multilevel	linked	listLinked	ListRecursiveMedium591.	Construct	a	height-balanced	BST	from	an	unbalanced	BSTBST,	Linked	ListDepth-First	Search,	RecursiveHard592.	Swap	kth	node	from	beginning	with	kth	node
from	the	end	in	a	linked	listLinked	ListMedium593.	Add	two	linked	lists	without	using	any	extra	spaceLinked	ListMedium594.	Remove	all	nodes	from	a	linked	list	that	matches	a	given	keyLinked	ListRecursiveEasy595.	Clone	a	linked	list	with	random	pointerLinked	ListHashing,	RecursiveHard596.	Update	random	pointer	for	each	linked	list	node	to
point	to	the	maximum	nodeLinked	ListRecursiveMedium597.	Link	nodes	present	in	each	level	of	a	binary	tree	in	the	form	of	a	linked	listBinary	Tree,	Linked	ListDepth-First	Search,	Hashing,	RecursiveHard598.	Convert	a	ternary	tree	to	a	doubly-linked	listBinary	Tree,	Linked	ListRecursiveMedium599.	Construct	a	height-balanced	BST	from	a	sorted
doubly	linked	listBST,	Linked	ListDepth-First	Search,	RecursiveHard600.	In-place	merge	two	sorted	linked	lists	without	modifying	links	of	the	first	listLinked	ListMedium601.	Reverse	specified	portion	of	a	linked	listLinked	ListMedium602.	Find	the	intersection	point	of	two	linked	listsLinked	ListHashingMedium603.	Extract	leaves	of	a	binary	tree	into
a	doubly-linked	listBinary	Tree,	Linked	ListDepth-First	Search,	RecursiveMedium604.	Find	the	vertical	sum	of	a	binary	treeBinary	Tree,	Linked	ListDepth-First	Search,	Hashing,	RecursiveHard605.	In-place	convert	a	binary	tree	to	a	doubly-linked	listBinary	Tree,	Linked	ListAmazon,	Depth-First	Search,	Microsoft,	RecursiveHard606.	Find	a	triplet	with
the	given	sum	in	a	BSTBST,	Linked	ListDepth-First	Search,	RecursiveHard607.	Check	whether	the	leaf	traversal	of	given	binary	trees	is	the	same	or	notBinary	Tree,	Linked	List,	StackDepth-First	Search,	RecursiveHard608.	Merge	sort	algorithm	for	a	singly	linked	listDivide	&	Conquer,	Linked	List,	SortingAlgorithm,	RecursiveHard609.	Sort	a	doubly-

linked	list	using	merge	sortDivide	&	Conquer,	Linked	List,	SortingRecursiveMedium610.	Stack	Implementation	using	a	Linked	ListBasic,	Linked	List,	StackBeginner611.	Clock	Angle	ProblemProgramming	PuzzlesAlgorithm,	AmazonTopAlgoEasy612.	Add	two	numbers	without	using	the	addition	operator	|	5	methodsProgramming	PuzzlesEasy613.
Generate	the	power	set	of	a	given	setArray,	Backtracking,	Bit	ManipulationAmazon,	RecursiveMedium614.	Implement	power	function	without	using	multiplication	and	division	operatorsProgramming	PuzzlesRecursiveEasy615.	Print	all	numbers	between	1	to	N	without	using	a	semicolonProgramming	PuzzlesRecursiveMedium616.	Swap	two	numbers
without	using	a	third	variable	|	5	methodsBit	Manipulation,	Programming	PuzzlesEasy617.	Determine	the	if	condition	to	print	the	specific	outputProgramming	PuzzlesRecursiveEasy618.	Find	maximum	and	minimum	value	of	a	triplet	without	using	a	conditional	statementProgramming	PuzzlesMedium619.	Find	numbers	represented	as	the	sum	of	two
cubes	for	two	different	pairsProgramming	PuzzlesHashingMedium620.	Print	Hello	World	with	empty	main	function	|	3	methodsProgramming	PuzzlesMedium621.	Tower	of	Hanoi	ProblemProgramming	PuzzlesAlgorithm,	RecursiveMedium622.	Print	all	numbers	between	1	to	N	without	using	any	loop	|	4	methodsProgramming	PuzzlesRecursiveEasy623.
Print	a	semicolon	without	using	a	semicolon	anywhere	in	the	programProgramming	PuzzlesEasy624.	Multiply	two	numbers	without	using	a	multiplication	operator	or	loopsProgramming	PuzzlesRecursiveEasy625.	Find	the	square	of	a	number	without	using	the	multiplication	and	division	operatorBit	Manipulation,	Divide	&	Conquer,	Programming
PuzzlesEasy626.	Check	if	a	number	is	even	or	odd	without	using	any	conditional	statementProgramming	PuzzlesEasy627.	Set	both	elements	of	a	binary	array	to	0	in	a	single	lineArray,	Programming	PuzzlesEasy628.	Find	minimum	number	without	using	conditional	statement	or	ternary	operatorProgramming	PuzzlesRecursiveMedium629.	Perform
division	of	two	numbers	without	using	division	operatorBit	Manipulation,	Programming	PuzzlesRecursiveMedium630.	Generate	0	and	1	with	75%	and	25%	probabilityBit	Manipulation,	C,	Programming	PuzzlesMedium631.	Generate	desired	random	numbers	with	equal	probabilityC,	Programming	PuzzlesMedium632.	Return	0,	1,	and	2	with	equal
probability	using	a	specified	functionC,	Programming	PuzzlesMedium633.	Generate	numbers	from	1	to	7	with	equal	probability	using	a	specified	functionC,	Programming	PuzzlesHard634.	Get	0	and	1	with	equal	probability	using	a	specified	functionC,	Programming	PuzzlesMedium635.	Generate	random	input	from	an	array	according	to	given
probabilitiesArray,	Programming	PuzzlesMedium636.	Generate	fair	results	from	a	biased	coinProgramming	PuzzlesHard637.	Implement	ternary	operator	without	using	conditional	expressionsC,	Programming	PuzzlesMedium638.	Determine	if	two	integers	are	equal	without	using	comparison	and	arithmetic	operatorsBit	Manipulation,	C,	Programming
PuzzlesHashingEasy639.	Compute	modulus	division	without	division	and	modulo	operatorBit	Manipulation,	Programming	PuzzlesEasy640.	Write	a	C/C++	program	without	using	the	main	functionC,	C++,	Programming	PuzzlesEasy641.	Single	line	expressions	to	swap	two	integers	in	JavaBit	Manipulation,	Java,	Programming	PuzzlesEasy642.	Find
maximum	number	without	using	conditional	statement	or	ternary	operatorProgramming	PuzzlesRecursiveEasy643.	Find	minimum	or	maximum	of	two	integers	without	using	branchingBit	Manipulation,	Programming	PuzzlesHard644.	Solve	a	given	set	of	problems	without	using	multiplication	or	division	operatorsBit	Manipulation,	Programming
PuzzlesMedium645.	Queue	implementation	using	an	array	C,	C++,	C++	(Using	Templates),	Java,	PythonQueueMust	KnowBeginner646.	Queue	Implementation	using	a	Linked	ListBasic,	Linked	List,	QueueBeginner647.	Implement	a	stack	using	the	queue	data	structureQueue,	StackRecursiveMedium648.	Implement	a	queue	using	the	stack	data
structureQueue,	StackRecursiveMedium649.	Efficiently	print	all	nodes	between	two	given	levels	in	a	binary	treeBinary	Tree,	QueueBreadth-First	Search,	Depth-First	Search,	Hashing,	RecursiveEasy650.	Chess	Knight	Problem	|	Find	the	shortest	path	from	source	to	destinationMatrix,	QueueAlgorithm,	Breadth-First	SearchTopClassic,
TopLikedHard651.	Shortest	path	in	a	maze	Lee	AlgorithmMatrix,	QueueAlgorithm,	Breadth-First	Search,	Maze,	Must	KnowTopAlgoMedium652.	Find	the	shortest	safe	route	in	a	field	with	sensors	presentMatrix,	QueueBreadth-First	Search,	MazeHard653.	Flood	Fill	AlgorithmMatrix,	QueueAlgorithm,	Breadth-First	Search,	Depth-First	Search,	Must
Know,	RecursiveTopAlgoMedium654.	Count	number	of	islandsMatrix,	QueueAmazon,	Breadth-First	SearchTopLikedMedium655.	Find	shortest	path	from	source	to	destination	in	a	matrix	that	satisfies	given	constraintsMatrix,	QueueBreadth-First	Search,	Maze,	RecursiveTopLikedHard656.	Generate	binary	numbers	between	1	to	n	using	a	queueBit
Manipulation,	Queue,	StringAmazonEasy657.	Print	nodes	of	a	binary	tree	in	vertical	orderBinary	Tree,	Linked	List,	QueueBreadth-First	Search,	Depth-First	Search,	RecursiveMedium658.	Print	all	nodes	of	a	perfect	binary	tree	in	a	specific	orderBinary	Tree,	QueueBreadth-First	Search,	HashingHard659.	Print	left	view	of	a	binary	treeBinary	Tree,
QueueAmazon,	Breadth-First	Search,	Depth-First	Search,	Hashing,	RecursiveTopLikedEasy660.	Find	the	next	node	at	the	same	level	as	the	given	node	in	a	binary	treeBinary	Tree,	QueueAmazon,	Breadth-First	Search,	Depth-First	Search,	Microsoft,	RecursiveMedium661.	Check	if	a	binary	tree	is	a	complete	binary	tree	or	notBinary	Tree,
QueueBreadth-First	Search,	RecursiveTopLikedMedium662.	Print	diagonal	traversal	of	a	binary	treeBinary	Tree,	QueueAmazon,	Breadth-First	Search,	Depth-First	Search,	Hashing,	RecursiveMedium663.	Print	corner	nodes	of	every	level	in	a	binary	treeBinary	Tree,	QueueAmazon,	Breadth-First	SearchEasy664.	Invert	Binary	TreeBinary	Tree,	Queue,
StackBreadth-First	Search,	Depth-First	Search,	RecursiveEasy665.	Find	minimum	passes	required	to	convert	all	negative	values	in	a	matrixMatrix,	QueueBreadth-First	Search,	RecursiveHard666.	Convert	a	binary	tree	into	a	doubly-linked	list	in	spiral	orderBinary	Tree,	Linked	List,	QueueBreadth-First	Search,	Depth-First	Search,	Hashing,
RecursiveHard667.	Check	if	a	binary	tree	is	a	min-heap	or	notBinary	Tree,	Heap,	QueueBreadth-First	Search,	Depth-First	Search,	RecursiveMedium668.	Invert	alternate	levels	of	a	perfect	binary	treeBinary	Tree,	Queue,	StackBreadth-First	Search,	Depth-First	Search,	RecursiveHard669.	Convert	a	Binary	Search	Tree	into	a	Min	HeapBST,	Heap,
Linked	List,	QueueDepth-First	Search,	RecursiveHard670.	Snake	and	Ladder	ProblemGraph,	QueueAlgorithm,	Breadth-First	SearchTopClassic,	TopLikedHard671.	Find	the	shortest	distance	of	every	cell	from	a	landmine	inside	a	mazeMatrix,	QueueBreadth-First	Search,	MazeHard672.	Convert	a	multilevel	linked	list	to	a	singly	linked	listLinked	List,
QueueMedium673.	Check	if	an	undirected	graph	contains	a	cycle	or	notGraph,	QueueAmazon,	Breadth-First	Search,	Depth-First	Search,	RecursiveTopLikedMedium674.	Find	maximum	cost	path	in	a	graph	from	a	given	source	to	a	given	destinationGraph,	QueueBreadth-First	SearchTopLikedMedium675.	Total	paths	in	a	digraph	from	a	given	source	to
a	destination	having	exactly	m	edgesGraph,	QueueBreadth-First	SearchMedium676.	Least	cost	path	in	a	digraph	from	a	given	source	to	a	destination	having	m	edgesGraph,	QueueBreadth-First	SearchMedium677.	Traverse	a	given	directory	using	BFS	and	DFS	in	JavaJava,	QueueBreadth-First	Search,	Depth-First	Search,	RecursiveEasy678.	Perform
vertical	traversal	of	a	binary	treeBinary	Tree,	QueueAmazon,	Breadth-First	Search,	Depth-First	Search,	Hashing,	RecursiveMedium679.	Compute	the	maximum	number	of	nodes	at	any	level	in	a	binary	treeBinary	Tree,	QueueBreadth-First	Search,	Depth-First	Search,	Hashing,	RecursiveEasy680.	Print	right	view	of	a	binary	treeBinary	Tree,
QueueBreadth-First	Search,	Depth-First	Search,	Hashing,	RecursiveMedium681.	Find	the	minimum	depth	of	a	binary	treeBinary	Tree,	QueueBreadth-First	Search,	Depth-First	Search,	RecursiveEasy682.	Depth-First	Search	(DFS)	vs	Breadth-First	Search	(BFS)Binary	Tree,	Graph,	Queue,	StackAlgorithm,	Breadth-First	Search,	Depth-First	Search,	Must
KnowBeginner683.	Bipartite	GraphGraph,	QueueAlgorithm,	Breadth-First	SearchTopLikedMedium684.	Compute	the	least	cost	path	in	a	weighted	digraph	using	BFSGraph,	QueueBreadth-First	Search,	RecursiveMedium685.	Find	the	path	between	given	vertices	in	a	directed	graphBacktracking,	Graph,	QueueBreadth-First	Search,	Depth-First	Search,
RecursiveEasy686.	Construct	a	directed	graph	from	an	undirected	graph	that	satisfies	given	constraintsGraph,	QueueBreadth-First	Search,	Depth-First	SearchMedium687.	Trie	Implementation	C,	C++,	C++	(Memory	Efficient),	Java,	PythonTrieBeginner688.	Longest	Common	Prefix	in	a	given	set	of	strings	(using	Trie)String,	TrieTrieMedium689.
Lexicographic	sorting	of	a	given	set	of	keysSorting,	String,	TrieDepth-First	Search,	Recursive,	TrieMedium690.	Lexicographic	rank	of	a	stringStringHard691.	Find	the	maximum	occurring	word	in	a	given	set	of	stringsString,	TrieDepth-First	Search,	Recursive,	TrieEasy692.	Find	first	k	maximum	occurring	words	in	a	given	set	of	stringsHeap,	String,
TrieDepth-First	Search,	Priority	Queue,	Recursive,	TrieMedium693.	Find	duplicate	rows	in	a	binary	matrixMatrix,	TrieAmazon,	Hashing,	TrieMedium694.	Word	Break	Problem	Using	Trie	Data	StructureDynamic	Programming,	String,	TrieAmazon,	Bottom-up,	Recursive,	TrieMedium695.	Generate	a	list	of	possible	words	from	a	character
matrixBacktracking,	Matrix,	TrieDepth-First	Search,	Hashing,	Recursive,	TrieHard696.	Find	all	words	matching	a	pattern	in	the	given	dictionaryString,	TrieRecursive,	TrieMedium697.	Find	the	shortest	unique	prefix	for	every	word	in	an	arrayString,	TrieDepth-First	Search,	Recursive,	TrieMedium698.	Remove	loop	from	a	linked	listLinked
ListHashingMedium699.	Find	number	of	customers	who	could	not	get	any	computerStringEasy700.	Find	the	smallest	missing	positive	number	from	an	unsorted	arrayArrayHashingMedium701.	Print	all	pairs	of	anagrams	in	a	set	of	stringsSorting,	String,	TrieDepth-First	Search,	RecursiveMedium702.	Find	total	arrangements	such	that	no	two	balls	of
the	same	color	are	togetherDynamic	ProgrammingRecursive,	Top-downHard703.	Determine	whether	a	BST	is	skewed	from	its	preorder	traversalArray,	BSTEasy704.	Determine	whether	two	nodes	lie	on	the	same	path	in	a	binary	treeBinary	TreeDepth-First	Search,	RecursiveMedium705.	Find	height	of	a	binary	tree	represented	by	the	parent
arrayArray,	Binary	Tree,	Dynamic	ProgrammingBottom-up,	Recursive,	Top-downMedium706.	In-place	merge	two	height-balanced	BSTsBST,	Linked	ListDepth-First	Search,	RecursiveHard707.	Check	if	removing	an	edge	can	split	a	binary	tree	into	two	equal	size	treesBinary	TreeDepth-First	Search,	RecursiveEasy708.	Find	read-write	conflicts	among
given	database	transactionsArray,	SortingMedium709.	Construct	a	complete	binary	tree	from	its	linked	list	representationBinary	Tree,	Linked	List,	QueueRecursiveEasy710.	Find	the	minimum	number	of	merge	operations	to	make	an	array	palindromeArrayMedium711.	Check	whether	a	directed	graph	is	EulerianGraphDepth-First	SearchMedium712.
Count	nodes	in	a	BST	that	lies	within	a	given	rangeBSTDepth-First	Search,	RecursiveEasy713.	Check	if	a	number	is	a	power	of	8	or	notBit	ManipulationMedium714.	Check	if	a	number	is	a	perfect	squareDivide	&	Conquer,	Programming	PuzzlesAlgorithm,	Binary	SearchEasy715.	Shrink	an	array	by	removing	triplets	that	satisfy	given	constraintsArray,
Dynamic	ProgrammingRecursive,	Top-downHard716.	Count	distinct	permutations	of	an	array	that	sums	to	a	targetArray,	Dynamic	ProgrammingRecursiveMedium717.	Check	if	a	string	can	be	constructed	from	another	stringStringEasy718.	Check	children-sum	property	in	a	binary	treeBinary	TreeDepth-First	Search,	RecursiveEasy	Thanks	for	reading.
To	share	your	code	in	the	comments,	please	use	our	online	compiler	that	supports	C,	C++,	Java,	Python,	JavaScript,	C#,	PHP,	and	many	more	popular	programming	languages.	Like	us?	Refer	us	to	your	friends	and	support	our	growth.	Happy	coding	:)	This	is	the	article	I	wish	I	had	read	when	I	started	coding.	I	will	dive	deep	into	20	problem-solving
techniques	that	you	must	know	to	excel	at	your	next	interview.	They	have	helped	me	at	work	too	and	even	given	me	ideas	for	a	side	project	I	am	working	on.	Also,	the	last	section	includes	astep-by-step	guideexplaining	how	tolearn	data	structures	and	algorithms,	with	examples.Furthermore,	I	recommend	you	readthis	post,	where	I	outlined	a	high-
level	strategy	to	prepare	for	your	next	coding	interview	as	well	as	the	top	mistakes	to	avoid.I	have	grouped	these	techniques	in:Pointer	basedRecursion	basedSorting	and	searchingExtending	basic	data	structuresMiscellaneaI	will	explain	each	of	them,	show	how	to	apply	them	to	coding	problems,	and	leave	you	some	exercises	so	that	you	can	practice
on	your	own.	For	your	convenience,	I	have	copied	here	the	problem	statements,	but	I	have	left	links	to	all	of	the	exercises.	You	can	copy-paste	my	solution	and	play	around	with	it.	I	strongly	recommend	you	code	your	solution	and	see	if	it	passes	the	tests.Some	of	the	questions	are	better	explained	through	an	image	or	diagram.	For	these,	I	have	left	a
comment	asking	you	to	open	the	link	to	get	a	graphical	description	of	the	problem.This	list	is	part	of	the	study	notes	that	I	took	before	I	applied	to	Amazon.	I	hope	they	will	be	as	useful	to	you	as	they	have	been	to	me.Pointer	based	techniques1.	Two	PointersThis	technique	is	very	useful	onsorted	arraysand	arrays	whose	elements	we	want	togroup.The
idea	is	to	use	two	(or	more	pointers)	to	split	the	array	into	different	areas	or	groups	based	on	some	condition:Elements	smaller	than,	equal	to	and	greater	than	a	certain	valueElements	whose	sum	is	too	small	or	too	largeEtc.The	following	examples	will	help	you	understand	this	principle.Two	sumGiven	an	array	of	integers	that	is	already	sorted	in
ascending	order,	find	two	numbers	such	that	they	add	up	to	a	specific	target	number.	The	function	twoSum	should	return	indices	of	the	two	numbers	such	that	they	add	up	to	the	target,	where	index1	must	be	less	than	index2.Notes:Your	returned	answers	(both	index1	and	index2)	are	not	zero-based.You	may	assume	that	each	input	would	have	exactly
one	solution	and	you	may	not	use	the	same	element	twice.Example:Input:	numbers	=	[2,7,11,15],	target	=	9Output:	[1,2]Explanation:	The	sum	of	2	and	7	is	9.	Therefore	index1	=	1,	index2	=	2.SolutionSince	the	arrayais	sorted,	we	know	that:The	largest	sum	is	equal	to	the	sum	of	the	last	2	elementsThe	smallest	sum	is	equal	to	the	sum	of	the	first	2
elementsFor	any	indexiin	[0,	a.size()	1)	=>	a[i	+	1]	>=	a[i]With	this,	we	can	design	the	following	algorithm:We	keep	2	pointers:l,	starting	at	the	first	element	of	the	array,	andrstarting	at	to	the	last.If	the	sum	of	a[l]	+	a[r]	is	smaller	than	our	target,	we	increment	l	by	one	(to	change	the	smallest	operand	in	the	addition	for	another	one	equal	or	larger
than	it	atl+1);	if	it	is	larger	than	the	target,	we	decrease	r	by	one	(to	change	our	largest	operand	for	another	one	equal	or	smaller	atr-1).We	do	this	until	a[l]	+	a[r]	equals	our	target	or	l	and	r	point	to	the	same	element	(since	we	cannot	use	the	same	element	twice)	or	have	crossed,	indicating	there	is	no	solution.Here	is	a	simple	C++
implementation:vector	twoSum(const	vector&	a,	int	target)	{	int	l	=	0,	r	=	a.size()	-	1;	vector	sol;	while(l	<	r)	{	const	int	sum	=	a[l]	+	a[r];	if(target	==	sum)	{	sol.push_back(l	+	1);	sol.push_back(r	+	1);	break;	}	else	if	(target	>	sum)	{	++l;	}	else	{	--r;	}	}	return	sol;}The	time	complexity	is	O(N),	since	we	may	need	to	traverse	the	N	elements	of	the
array	to	find	the	solution.The	space	complexity	is	O(1),	since	we	only	need	two	pointers,	regardless	of	how	many	elements	the	array	contains.There	are	other	ways	of	solving	this	problem	(using	a	hash	table,	for	example),	but	I	have	used	it	just	as	an	illustration	of	the	two	pointer	technique.ChallengesHere	are	two	variations	of	this	exercise:three
sumandfour	sum.	They	can	be	solved	similarly	byreducingthem	to	this	very	same	problem.This	is	a	very	common	technique:transform	a	problem	whose	solution	you	dont	know	to	a	problem	that	you	can	solve.Given	a	sorted	array,	nums,	remove	the	duplicates	in-place	such	that	each	element	appears	only	once	and	return	the	new	length.Do	not	allocate
extra	space	for	another	array,	you	must	do	this	by	modifying	the	input	array	in-place	with	O(1)	extra	memory.Example	1:Given	nums	=	[1,1,2],Output	=	2Example	2:Given	nums	=	[0,0,1,1,1,2,2,3,3,4],Output	=	5It	doesnt	matter	what	values	are	set	beyond	the	returned	length.SolutionThe	array	issortedand	we	want	to	move	duplicates	to	the	end	of	the
array,	which	sounds	a	lot	likegrouping	based	on	some	condition.	How	would	you	solve	this	problem	using	two	pointers?You	will	need	one	pointer	to	iterate	through	the	array,i.And	a	second	pointer,n,	one	to	define	the	area	that	contains	no	duplicates:	[0,n].The	logic	is	as	follows.	If	the	values	of	the	elements	at	indexi(excepti=	0)	andi-1are:The	same,
we	dont	do	anything	this	duplicate	will	be	overwritten	by	the	next	unique	element	ina.Different:	we	adda[i]to	the	section	of	the	array	that	contains	no	duplicates	delimited	byn,	and	increment	n	by	one.int	removeDuplicates(vector&	nums)	{	if(nums.empty())	return	0;	int	n	=	0;	for(int	i	=	0;	i	<	nums.size();	++i){	if(i	==	0	||	nums[i]	!=	nums[i	-	1]){
nums[n++]	=	nums[i];	}	}	return	n;}This	problem	has	linear	time	complexity	and	constant	space	complexity	(it	is	usually	the	case	for	problems	solved	using	this	technique).Sort	colorsGiven	an	array	with	n	objects	colored	red,	white,	or	blue,	sort	them	in-place	so	that	objects	of	the	same	color	are	adjacent,	with	the	colors	in	the	order	red,	white,	and
blue.	Here,	we	will	use	the	integers	0,	1,	and	2	to	represent	the	color	red,	white,	and	blue	respectively.Note:	You	are	not	supposed	to	use	the	librarys	sort	function	for	this	problem.Example:Input:	[2,0,2,1,1,0]Output:	[0,0,1,1,2,2]SolutionThe	groups	this	time	are:Smaller	than	1Equal	to	1Larger	than	1What	we	can	achieve	with	3	pointers.This
implementation	is	a	bit	tricky,	so	make	sure	you	test	it	thoroughly.void	sortColors(vector&	nums)	{	int	smaller	=	0,	eq	=	0,	larger	=	nums.size()	-	1;	while(eq	next	!=	nullptr)	{	slow	=	slow->next;	fast	=	fast->next->next;	}	return	slow;	}Given	a	linked	list,	determine	if	it	has	a	cycle	in	it.	To	represent	a	cycle	in	the	given	linked	list,	we	use	an	integer
pos	which	represents	the	position	(0-indexed)	in	the	linked	list	where	the	tail	connects	to.	If	pos	is	-1,	then	there	is	no	cycle	in	the	linked	list.Example	1:Input:	head	=	[3,2,0,-4],	pos	=	1Output:	trueExplanation:	There	is	a	cycle	in	the	linked	list,	where	the	tail	connects	to	the	second	node.SolutionThe	simplest	solution	is	to	add	all	the	nodes	to	a	hash
set.	When	we	traverse	the	list,	if	we	get	to	a	node	that	has	already	been	added	to	the	set,	there	is	a	cycle.	If	we	get	to	the	end	of	the	list,	there	are	no	cycles.This	has	a	time	complexity	of	O(L),	beingLthe	length	of	the	list,	and	space	complexity	of	O(L),	since	in	theworstcase	no	cycles	we	need	to	add	all	the	elements	of	the	list	to	the	hash	set.Time
complexity	cannot	be	improved.	However,	space	complexity	can	be	reduced	to	O(1).	Think	for	a	minute	how	this	can	be	achieved	with	two	pointers	moving	at	different	speeds.Lets	call	these	pointers	fast	and	slow.	For	each	node	slow	visits,	fast	will	move	two	nodes	forward.	Why?If	fast	reaches	the	end	of	the	list,	the	list	does	not	contain	any	cycles.If
there	is	a	cycle,	since	fast	moves	twice	as	fast	as	slow,	it	is	just	a	matter	of	time	(iterations,	to	be	more	precise)	that	the	fast	node	catches	the	slow	one,	pointing	both	to	the	same	node,	which	indicates	the	existence	of	a	cycle.Now,	lets	translate	this	solution	into	code:bool	hasCycle(ListNode	*head)	{	ListNode*	slow	=	head,	*fast	=	head;	while(fast){
slow	=	slow->next;	fast	=	fast->next;	if(!fast)	break;	fast	=	fast->next;	if(slow	==	fast)	return	true;	}	return	false;}Find	the	duplicate	numberGiven	an	array,	nums,	containing	n	+	1	integers	where	each	integer	is	between	1	and	n	(inclusive),	prove	that	at	least	one	duplicate	number	must	exist.	Assume	that	there	is	only	one	duplicate	number,	find	the
duplicate	one.Example	1:Input:	[1,3,4,2,2]Output:	2SolutionThis	is	the	same	problem/solution	as	the	previous	problems,	for	arrays	instead	of	linked	lists.int	findDuplicate(const	vector&	nums)	{	int	slow	=	nums[0],	fast	=	slow;	do	{	slow	=	nums[slow];	fast	=	nums[nums[fast]];	}	while(slow	!=	fast);	slow	=	nums[0];	while(slow	!=	fast){	slow	=
nums[slow];	fast	=	nums[fast];	}	return	slow;}ChallengesHere	are	more	problems	that	can	be	solved	using	this	technique:Detect	if	two	linked	lists	have	elements	in	commonHappy	numbers3.	Sliding	WindowThe	sliding	window	technique	eases	the	task	of	finding	optimalchunks	of	contiguous	datathat	meet	a	certain	condition:Longest	subarray	that
Shortest	substring	containing	EtcYou	can	think	of	it	as	another	variation	of	the	two	pointer	technique,	where	pointers	are	updated	separately	based	on	a	certain	condition.	Below	is	the	basic	recipe	for	this	type	of	problems,	in	pseudocode:Create	two	pointers,	l,	and	rCreate	variable	to	keep	track	of	the	result	(res)	Iterate	until	condition	A	is	satisfied:
Based	on	condition	B:update	l,	r	or	bothUpdate	resReturn	resGiven	a	string,	find	the	length	of	the	longest	substring	without	repeating	characters.Example	1:Input:	abcabcbbOutput:	3Explanation:	The	answer	is	abc,	with	the	length	of	3SolutionFind	the	length	of	the	longest	substring	without	repeating	characters	sounds	a	lot	likefinding	optimal
*chunks	of	contiguous	datathat	meet	a	certain	condition.*Based	on	the	recipe	I	described	above,	you	will	need:Two	pointers,landr,	to	define	our	substrings.A	variable,sol,	to	store	the	length	of	the	longest	substring	we	have	seen	so	far.A	way	of	keeping	track	of	the	characters	that	forms:	a	set,seen,	will	be	perfect	for	this.While	iterating	through	the
string:If	the	current	character	is	inseen*you	have	to	increment	*lto	start	removing	elements	from	the	beginning	of	ours.Otherwise,	add	the	character	toseen,	moverforward	and	updatesol.int	lengthOfLongestSubstring(const	string&	s)	{	int	sol	=	0;	int	l	=	0,	r	=	0;	unordered_set	seen;	while(r	<	s.size())	{	const	auto	find	=	seen.find(s[r]);	if(find	==
seen.end())	{	sol	=	max	(sol,	r	-	l	+	1);	seen.insert(s[r]);	++r;	}	else	{	seen.erase(s[l++]);	}	}	return	sol;}ChallengesFor	more	practice,	you	can	try	the	following	problems:Permutation	of	a	stringMax	consecutive	onesThere	might	be	simpler	solutions	but	focus	on	using	this	technique	to	get	a	better	grasp	of	it.Recursion	based	techniques4.	Dynamic
ProgrammingI	already	published	a	long	and	detailed	article	on	this	topic	that	you	can	findhere.5.	BacktrackingThe	idea	behind	backtracking	is	to	explore	all	the	potential	solutions	for	a	problem,	in	a	smart	way.	It	builds	candidate	solutions	incrementally	and	as	soon	as	it	determines	that	a	candidate	solution	is	not	viable,	itbacktracks	to	a	previous
state	and	tries	the	next	candidate.Backtracking	problems	present	you	with	a	list	of	choices.	Should	you:Placethis	pieceinthis	position?Addthis	numberto	the	set?Trythis	numberinthis	positionnext?EtcAfter	you	have	picked	one	of	the	options,	it	will	get	you	a	new	list	of	choices,	until	you	reach	a	state	where	there	are	no	more	choices:	either	you	arrived
at	a	solution	or	there	is	no	solution.Visually,	you	are	moving	from	the	root	of	a	tree	with	every	choice,	until	you	get	to	a	leaf.	The	basic	high-level	recipe	(in	pseudocode)	for	a	backtracking	algorithm	is	the	following:boolean	backtracking(Node	n){	if(isLeaf(n)	{	if(isSolution(candidate)){	sol.add(candidate);	return	true;	}	else	{	return	false;	}	}	//Explore
all	children	for(child	in	n)	{	if(backtracking(child))	return	true;	}	return	false;}This	can	of	course	change	depending	on	the	problem:If	you	needallsolutions,	the	helper	function	returns	nothing	(void)	to	avoid	stopping	when	we	find	the	first	solution.To	backtrack,	you	may	have	to	bring	your	program	to	a	previous	state	before	you	can	move	forwardAfter
you	choose	a	child,	you	need	to	detect	if	the	candidate	solution	is	viable	or	not:	the	definition	of	viable	depends	on	the	problemEtcBut	the	core	idea	is	the	same:	examine,	in	a	systematic	way,	all	paths	and	backtrack	as	soon	as	the	current	path	is	no	longer	viable.N	queensThe	n-queens	puzzle	is	the	problem	of	placing	n	queens	on	an	nn	chessboard
such	that	no	two	queens	attack	each	other	Given	an	integer	n,	return	all	distinct	solutions	to	the	n-queens	puzzle.Each	solution	contains	a	distinct	board	configuration	of	the	n-queens	placement,	where	Q	and	.	both	indicate	a	queen	and	an	empty	space	respectively.Example:Input:	4Output:	[[.Q..,	Q,	Q,	..Q.],	[..Q.,	Q,	Q,	.Q..]]Explanation:	There	exist
two	distinct	solutions	to	the	4-queens	puzzle	as	shown	above.SolutionThis	is	a	classic	backtracking	problem:We	need	all	solutions	here,	which	is	why	the	recursive	function	returns	nothing	as	I	explained	in	the	introduction	of	this	section.Do	not	worry	too	much	about	theisViableSolutionfunction	for	now.	Try	to	see	the	recipe	I	gave	(slightly	modified)
you	in	action.class	Solution	{public:	vector	solveNQueens(int	n)	{	vector	solutions;	/**	This	is	usually	solved	with	a	vector	of	integers,	where	each	integer	represents	the	position	of	the	queen	in	that	column.	This	particular	problem	expects	strings.	Each	string	represents	a	column	*/	vector	board(n,	string(n,	'.'));	solveBoard(solutions,	board,	0,	n);
return	solutions;	}	void	solveBoard(vector&	solutions,	vector&	board,	int	col,	int	n){	if(col	==	n){	solutions.push_back(board);	return;	}	for(int	row	=	0;	row	<	n;	row++){	if(isViableSolution(board,	row,	col)){	board[row][col]	=	'Q';	solveBoard(solutions,	board,	col	+	1,	n);	//Backtracking	-	we	bring	our	board	to	the	previous	state	board[row][col]	=	'.';	}
}	}	bool	isViableSolution(vector&	board,	int	row,	int	col){	int	n	=	board.size();	for(int	x	=	1;	x	=	0	&&	col	>=	x;	x++){	if(board[row-x][col-x]	==	'Q')	return	false;	}	for(int	x	=	1;	row	+	x	<	n	&&	col	>=	x;	x++){	if(board[row+x][col-x]	==	'Q')	return	false;	}	return	true;	}};Letter	combinationGiven	a	string	containing	digits	from	2-9	inclusive,	return	all
possible	letter	combinations	that	the	number	could	represent	(check	the	link	for	diagram).	Note	that	1	does	not	map	to	any	letters.Example:Input:	23Output:	[ad,	ae,	af,	bd,	be,	bf,	cd,	ce,	cf].SolutionFor	every	number	in	the	input,	you	have	several	letters	to	choose	from.	If	you	can	draw	a	tree	(this	is	what	I	do)	where	the	branches	are	born	from	the
different	choices	you	take,	chances	are	that	you	can	apply	backtracking.Note:	Before	you	start	solving	any	problem,	try	different	approaches:	dynamic	programming,	greedy	algorithms,	divide	and	conquer,	a	combination	of	algorithms	and	data	structures,	etc.	Coding	is	thelast	step.My	solution,	in	C++:vector	letterCombinations(const	string	&digits)	{
if(digits.empty())	return	{};	const	vector	letters	{"",	"",	"abc",	"def",	"ghi",	"jkl",	"mno",	"pqrs",	"tuv",	"wxyz"};	vector	sol;	string	candidate	(digits.size(),	'	');	h(sol,	0,	candidate,	letters,	digits);	return	sol;}	void	h(vector	&sol,	int	idx,	string	&candidate,	const	vector	&letters,	const	string	&digits){	if(idx	==	digits.size()){	sol.push_back(candidate);	return;
}	for(const	char	&c	:	letters[digits[idx]	-	'0'])	{	candidate[idx]	=	c;	h(sol,	idx	+	1,	candidate,	letters,	digits);	}}Since	I	knew	already	the	size	of	the	solution,	I	initialize	mycandidatewith	that	size	and	just	modified	the	character	at	positionidx.	If	the	size	is	not	known,	this	can	be	done	instead:string	candidate;	//instead	of	string	candidate	(digits.size(),	'
');for(const	char	&c	:	letters[digits[idx]	-	'0'])	{	candidate.push_back(c);	h(sol,	idx	+	1,	candidate,	letters,	digits);	candidate.pop_back();}	Sudoku	solverWrite	a	program	to	solve	a	Sudoku	puzzle	by	filling	the	empty	cells.	Open	the	link	to	get	a	longer	description,	including	an	image	of	the	puzzle.SolutionIn	an	interview,	unless	you	have	plenty	of	time,
you	will	not	need	to	implementisViableSolution,	just	to	sketch	it.	I	know	a	colleague	who	got	this	question	in	an	on-site.Even	though	the	code	is	long,	it	is	mostly	because	ofisViableSolution.	Otherwise,	it	is	not	very	different	from	other	backtracking	problems.void	solveSudoku(vector&	board){	helper(board);}	bool	helper(vector&	board,	int	row	=	0,	int
col	=	0)	{	if(col	==	size){	col	=	0;	++row;	if(row	==	size){	return	true;	}	}	if(board[row][col]	!=	'.'){	return	helper(board,	row,	col	+	1);	}	for(char	i	=	'1';	i	nums2[j])	{	++j;	}	else	{	++i;	}	}	return	sol;}The	time	complexity	of	this	approach	is	O(n	log	n)	even	though	the	two-pointer	part	is	linear	and	the	space	complexity	is	O(1)	not	including	the	space
needed	to	store	the	intersection,	of	course,	in	which	case	we	could	say	it	is	O(min(length(A),	length(B)).Challenges8.	IntervalsMost	interval	related	problems	I	have	seen	boil	down	to:Modeling	the	intervalas	an	array	of	two	elements,	a	pair/tuple	or	a	custom	class	(this	is	the	cleanest	option)Sortingthe	inputIterating	through	the	sorted	array	and
deciding	what	to	do	based	on	the	starts/ends	of	the	intervalsYou	can	see	this	as	yet	another	type	of	problem	that	can	be	simplified	after	sorting	the	input,	which	is	why	I	have	included	it	in	this	section.Im	leaving	here	my	solution	to	two	exercises,	based	on	what	I	have	just	described.	Try	them	before	reading	my	solutions.Merge	intervalsGiven	a
collection	of	intervals,	merge	all	overlapping	intervals.Example	1:Input:	intervals	=	[[1,3],[2,6],[8,10],[15,18]]Output:	[[1,6],[8,10],[15,18]]Explanation:	Since	intervals	[1,3]	and	[2,6]	overlaps,	merge	them	into	[1,6].Solutionvector	merge(vector&	intervals)	{	sort(intervals.begin(),	intervals.end(),	[](const	auto&	i1,	const	auto&	i2){	return	i1[0]	<	i2[0];
});	int	i	=	0;	vector	sol;	vector	curr(2);	while(i	<	intervals.size()){	curr	=	intervals[i++];	while(i	<	intervals.size()	&&	intervals[i][0]	x	>=	4,	which	is	true	for	any	integer	in	the	range	[2,]With	this,	we	can	search	in	[2,	x/2]	and	speed	things	up	a	bit.int	mySqrt(int	x)	{	if(x	==	0	||	x	==	1)	return	x;	int	sol	=	1;	int	l	=	2,	r	=	x	/	2;	while(l	x){	r	=	m	-	1;	}	else
{	sol	=	m;	l	=	m	+	1;	}	}	return	sol;}ChallengesHave	fun!10.Breadth-First	SearchThis	is	one	of	the	techniques	you	need	to	know	to	explore	trees	and	graphs.	Since	many	problems	can	be	modeled	as	graphs,	youmust	know	this	technique.	To	implement	it,	we	just	need	to	use	a	queueqand	add	to	this	same	queue	the	children	of	the	nodes	we	process
fromq.At	any	given	point	in	the	iteration,	BFS	visits	all	the	nodes	at	the	same	distance	from	the	origin.	This	will	become	clearer	after	some	of	these	examples.Word	ladderGiven	two	words	(beginWord	and	endWord),	and	a	dictionarys	word	list,	find	the	length	of	the	shortest	transformation	sequence	from	beginWord	to	endWord,	such	that:Only	one
letter	can	be	changed	at	a	time.Each	transformed	word	must	exist	in	the	word	list.Notes:Return	0	if	there	is	no	such	transformation	sequence.All	words	have	the	same	length.All	words	contain	only	lowercase	alphabetic	characters.You	may	assume	no	duplicates	in	the	word	list.You	may	assume	beginWord	and	endWord	are	non-empty	and	are	not	the
same.Example	1:Input:beginWord	=	hit,endWord	=	cog,wordList	=	[hot,dot,dog,lot,log,cog]Output:	5Explanation:	As	one	shortest	transformation	is	hit	->	hot	->	dot	->	dog	->	cog,	return	its	length	5.SolutionI	got	asked	this	question	during	my	on-site	interview	at	Amazon.	The	idea	is	to	model	this	problem	using	a	graph:Nodes	represent	wordsEdges
connect	words	that	only	differ	by	one	letterWith	this	setup,	this	problem	is	equivalent	to	finding	a	path	between	two	nodes	in	a	graph,	which	BFS	can	solve.	Since	all	edges	have	the	same	weight	(1),	we	do	not	need	Dijkstra	or	any	other	fancier	algorithm.int	ladderLength(const	string	&beginWord,	const	string	&endWord,	const	vector&	wordList)	{
if(beginWord	==	endWord)	return	1;	unordered_set	dict(wordList.begin(),	wordList.end());	queue	todo;	todo.push(beginWord);	dict.erase(beginWord);	int	ladder	=	1;	while	(!todo.empty())	{	ladder++;	int	n	=	todo.size();	for	(int	i	=	0;	i	<	n;	i++)	{	string	word	=	todo.front();	todo.pop();	for	(int	j	=	0;	j	<	word.size();	j++)	{	char	c	=	word[j];	for	(int	k	=
0;	k	<	26;	k++)	{	word[j]	=	'a'	+	k;	if	(dict.find(word)	!=	dict.end())	{	if	(word	==	endWord)	{	return	ladder;	}	todo.push(word);	dict.erase(word);	}	}	word[j]	=	c;	}	}	}	return	0;}After	you	visit	the	DFS	section:What	would	happen	if	we	use	DFS	instead?	Do	you	see	any	benefits/drawbacks?Order	level	tree	traversalGiven	a	binary	tree,	return	the	level
order	traversal	of	its	nodes	values.	(ie,	from	left	to	right,	level	by	level).Open	the	link	for	a	graphical	description	of	the	problem.SolutionYou	only	need	to	add	here	a	little	tweak	to	the	standard	BFS	algorithm:	you	need	to	know	how	many	elements	in	the	queue	you	need	to	process	for	each	level.This	is	one	approach	that	can	be	applied	to	many	other
problems.vector	levelOrder(TreeNode*	root)	{	if(!root)	return	{};	vector	sol;	queue	q;	q.push(root);	vector	partial;	while(!q.empty()){	int	size	=	q.size();	while(size-->0){	auto	n	=	q.front();	partial.push_back({n->val});	q.pop();	if(n->left)	q.push({n->left});	if(n->right)	q.push({n->right});	}	sol.push_back(partial);	partial.clear();	}	return
sol;}ChallengesLet	me	propose	a	different	kind	of	challenge:	building	something,	instead	of	solving	abstract	problems.	I	find	it	more	fun	and	you	can	add	them	to	your	Github	profile.	Here	are	just	two	examples:Web	crawlerusing	BFS	to	explore	all	the	links	on	a	website.Minesweeper11.Depth-First	SearchSimilar	to	BFS	in	its	purpose:	explore	trees
and	graphs.	DFS	is	not	guaranteed	to	find	the	shortest	path	between	two	points,	but	it	will	find	any	existing	path.It	is	usually	shorter	to	implement	than	BFS.	Some	people	find	it	easier.	Others,	because	of	the	recursive	calls,	not	so	much.	It	is	up	to	you.	Just	make	sure	you	think	about	potential	stack	overflow	issues	if	the	size	of	the	stack	starts	to	get
big.Some	problems	are	much	easier	to	be	solved	with	DFS/recursion,	that	it	is	worth	practicing.Number	of	islandsGiven	a	2d	grid	map	of	1s	(land)	and	0s	(water),	count	the	number	of	islands.	An	island	is	surrounded	by	water	and	is	formed	by	connecting	adjacent	lands	horizontally	or	vertically.	You	may	assume	all	four	edges	of	the	grid	are	all
surrounded	by	water.Example:Input:	grid	=	[[1,1,1,1,0],	[1,1,0,1,0],	[1,1,0,0,0],	[0,0,0,0,0]]Output:	1SolutionI	got	this	problem	at	my	first	phone	interview	at	Amazon.As	soon	as	you	see	a	matrix,	think	of	a	graph.	This	problem	(and	its	variations)	is	very	straightforward:Iterate	through	the	matrixFor	every	1	you	find,	increase	the	counter	and	sink	the
islandTo	sink	the	island,	you	need	to	visit	all	the	surrounding	1s	in	the	matrix,	which	is	equivalent	tovisit	all	the	neighbors	of	that	node	and	of	all	its	neighbors,	which	sounds	a	lot	like	a	recursive	problem.You	can	try	to	solve	this	using	BFS	too,	but	DFS	is	much	shorter.int	numIslands(vector&	grid)	{	int	numIslands	=	0;	for(int	r	=	0;	r	<	grid.size();
++r){	for(int	c	=	0;	c	<	grid[0].size();	++c){	if(grid[r][c]	==	'1'){	++numIslands;	sinkIslands(grid,	r,	c);	}	}	}	return	numIslands;}	const	vector	dirs	{{1,	0},	{-1,	0},	{0,	1},	{0,	-1}};	void	sinkIslands(vector	&m,	int	r,	int	c){	m[r][c]	=	'0';	for(const	auto	&d	:	dirs){	const	int	nr	=	r	+	d[0];	const	int	nc	=	c	+	d[1];	if(isValid(m,	nr,	nc)){	sinkIslands(m,	nr,
nc);	}	}}	bool	isValid(vector	&m,	int	r,	int	c){	return	r	>=	0	&&	r	<	m.size()	&&	c	>=	0	&&	c	<	m[0].size()	&&	m[r][c]	==	'1';}Symmetric	treeGiven	a	binary	tree,	check	whether	it	is	a	mirror	of	itself	(ie,	symmetric	around	its	center).SolutionMany	tree-related	problems	have	relatively	straightforward	recursive	solutions.	This	problem	could	be	solved
using	BFS	but	DFS	makes	it	so	much	easier.I	will	leave	this	one	here	as	an	exercise	for	you.	Just	use	my	solution	in	case	you	get	stuck.bool	isSymmetric(TreeNode*	root)	{	if(!root)	return	true;	return	helper(root->left,	root->right);}bool	helper(TreeNode*	p,	TreeNode*	q){	if(!p	&&	!q)	return	true;	if(!p	||	!q)	return	false;	return	p->val	==	q->val	&&
iS(p->left,	q->right)	&&	iS(p->right,	q->left);}ChallengesTake	the	same	challenges	and	exercises	I	gave	you	for	BFS	and	try	to	implement	them	using	DFS	instead.	Also,	for	more	practice,	give	a	try	to	the	following	exercises:Path	sumPath	sum	2Validate	BST12.Topological	sortYou	can	see	this	algorithm	as	an	application	of	DFS.	Its	implementation
just	needs	one	minor	change	to	the	regular	DFS:	after	processing	all	the	children	of	a	node,	add	this	node	to	a	stack.It	is	that	simple.The	best	way	to	intuitively	understand	what	this	algorithm	achieves	is	to	imagine	a	bunch	of	tasks,	some	of	which	depend	on	others	(task	1	cannot	start	until	task	2	has	finished).	A	topological	sort	will	list	all	these	tasks
preserving	this	structure	of	dependencies.Lets	solve	a	problem	using	this	algorithm.Course	schedule	IIThere	are	a	total	of	n	courses	you	have	to	take,	labeled	from	0	to	n-1.	Some	courses	may	have	prerequisites,	for	example,	to	take	course	0	you	have	to	first	take	course	1,	which	is	expressed	as	a	pair:	[0,1]Given	the	total	number	of	courses	and	a	list
of	prerequisite	pairs,	return	the	ordering	of	courses	you	should	take	to	finish	all	courses.	There	may	be	multiple	correct	orders,	you	just	need	to	return	one	of	them.	If	it	is	impossible	to	finish	all	courses,	return	an	empty	array.Example	1:Input:	2,	[[1,0]]Output:	[0,1]Explanation:	There	are	a	total	of	2	courses	to	take.	To	take	course	1	you	should	have
finished	course	0.	So	the	correct	course	order	is	[0,1].Example	2:Input:	4,	[[1,0],[2,0],[3,1],[3,2]]Output:	[0,1,2,3]	or	[0,2,1,3]Explanation:	There	are	a	total	of	4	courses	to	take.	To	take	course	3	you	should	have	finished	both	courses	1	and	2.	Both	courses	1	and	2	should	be	taken	after	you	finished	course	0.	So	one	correct	course	order	is	[0,1,2,3].
Another	correct	ordering	is	[0,2,1,3].SolutionThis	is	the	classical	topological	sort	problem.	There	are	a	bunch	of	courses	to	take	and	some	depend	on	others.	This	can	be	modeled	as	a	directed	graph.	A	topological	sort	would	returnthe	ordering	of	courses	you	should	take	to	finish	all	courses.A	prerequisite	to	applying	topological	sort	is	that	the	graph
isdirected	and	acyclic.	From	the	problem	description,	we	can	see	that	the	graph	is	directed.	We	can	detect	if	it	contains	any	cyclesandcompute	a	topological	sort	in	the	same	pass.A	more	indirect	but	still	valid	approach	would	be	to	first	check	whether	it	has	cycles	and	only	if	there	are	no	cycles,	compute	a	topological	sort.vector	findOrder(int
numCourses,	vector&	prerequisites)	{	vector	adj(numCourses,	vector(0));	for(const	auto	&p	:	prerequisites){	int	u	=	p[0];	int	v	=	p[1];	adj[u].push_back(v);	}	vector	white(numCourses,	true),	grey(numCourses),	black(numCourses);	vector	sol	(0);	for(int	i	=	0;	i	<	numCourses;	++i){	if(white[i]	&&	hasCycle(adj,	i,	white,	grey,	black,	sol)){	return	{};	}	}
return	sol;}	bool	hasCycle(const	vector&	adj,	int	i,	vector	&white,	vector	&grey,	vector	&black,	vector&	sol){	//We	have	started	exploring	this	node	white[i]	=	false;	grey[i]	=	true;	for(const	auto	&	n	:	adj[i]){	if(black[i])	continue;	if(grey[n]	||	hasCycle(adj,	n,	white,	grey,	black,	sol))	return	true;	}	grey[i]	=	false;	black[i]	=	true;	sol.push_back(i);	return
false;}ChallengesHereyou	can	find	a	few	more	problems	to	practice.Have	fun!Extending	basic	data	structures13.	DequeuesI	have	seen	data	structure	mostly	used	as	another	way	to	implement	the	sliding	window	technique	you	read	about	earlier	in	this	article.	The	only	difference	with	a	standard	FIFO	queue	is	that	you	can	operate	(insert	and	delete
elements)	onboth	endsof	the	queue.Thats	it.	Simple.Lets	see	how	such	a	minor	change	can	simplify	some	kind	of	these	problems.Sliding	window	maximumGiven	an	array,	nums,	there	is	a	sliding	window	of	size	k	which	is	moving	from	the	very	left	of	the	array	to	the	very	right.	You	can	only	see	the	k	numbers	in	the	window.	Each	time	the	sliding
window	moves	right	by	one	position.	Return	the	max	sliding	window.Note:	Open	the	link	for	a	better	understanding	of	the	problem	(there	is	an	image).Example:Input:	nums	=	[1,3,-1,-3,5,3,6,7],	and	k	=	3Output:	[3,3,5,5,6,7]SolutionWe	will	use	the	dequeue	to	storeindices,	not	values.	We	need	this	to	know	what	elements	are	still	part	of	the	sliding
window.	For	every	iteration,	there	are	four	things	to	do.Remove	elements	in	the	dequeue	which	are	outside	of	the	current	sliding	window	(one	per	iteration)Removeallelements	in	the	dequeue	which	are	smaller	than	the	current	element	we	are	at	since	they	cannot	represent	the	max	of	that	sliding	windowAdd	the	current	element	to	the	dequeOnce	we
have	completed	the	first	sliding	window,	we	can	start	adding	elements	to	our	solution.	By	design,	the	element	at	the	front	of	our	dequeue	will	contain	the	maximum	of	the	sliding	window,	which	is	what	we	are	interested	in.This	technique	can	be	applied	to	find	the	minimum	or	other	properties	of	a	contiguous	block	of	data	in	an	array.vector
maxSlidingWindow(const	vector&	nums,	int	k)	{	vector	sol;	deque	dq;	for	(int	i=0;	i=	k-1)	sol.push_back(nums[dq.front()]);	}	return	sol;}ChallengeDesign	your	owncircular	dequeue,	to	fully	grasp	the	internals	of	this	data	structure.14.TrieThe	best	way	to	think	of	a	trie	is	as	an	extension	of	a	tree,	where	you	store	characters	that	form	words	as	you
move	through	the	different	branches	of	the	trie.There	are	variants	where	you	store	suffixes	instead	of	prefixes,	where	you	use	compression	to	reduce	the	size	of	the	trie,	etc.	But	at	its	basic,	it	is	another	type	of	tree.They	are	used	everywhere:Auto-completeSpell	checkersIP	routingLongest	prefix/suffix	matchingEtcImplement	a	trieImplement	a	trie
with	insert,	search,	and	startsWith	methods.SolutionHere	is	a	simple	implementation	(for	an	interview,	of	course)	of	a	trie.	Compared	to	a	tree,	you	just:An	extra	boolean	to	indicate	whether	that	node	marks	the	end	of	a	wordA	data	structure	to	store	pointers	to	the	nodes	children:	a	hash	table,	an	array	of	characters,	etc.class	Trie	{private:	struct
Node{	bool	isWord;	unordered_map	children;	Node()	:	isWord(false)	{}	};	Node*	findNode(const	string	&word){	Node*	curr	=	root;	for(int	i	=	0;	i	<	word.size()	&&	curr;	++i)	curr	=	curr->children[word[i]	-	'a'];	return	curr;	}	public:	Node*	root;	/**	Initialize	your	data	structure	here.	*/	Trie()	{	root	=	new	Node();	}	/**	Inserts	a	word	into	the	trie.	*/
void	insert(const	string	&word)	{	Node	*	curr	=	root;	for(int	i	=	0;	i	<	word.size();	++i){	const	char	c	=	word[i]	-	'a';	if(!curr->children[c]){	Node*	newChild	=	new	Node();	curr->children[c]	=	newChild;	}	curr	=	curr->children[c];	}	curr->isWord	=	true;	}	/**	Returns	true	if	the	word	is	in	the	trie.	*/	bool	search(const	string	&word)	{	Node*	curr	=
findNode(word);	return	curr	?	curr->isWord	:	false;	}	/**	Returns	true	if	there	is	any	word	in	the	trie	that	starts	with	the	given	prefix.	*/	bool	startsWith(const	string	&prefix)	{	Node*	curr	=	findNode(prefix);	return	curr	?	true	:	false;	}};Word	search	IIGiven	a	2D	board	and	a	list	of	words	from	the	dictionary,	find	all	words	on	the	board.	Each	word
must	be	constructed	from	letters	of	adjacent	cells,	where	adjacent	cells	are	those	horizontally	or	vertically	neighboring.	The	same	letter	cell	may	not	be	used	more	than	once	in	a	word.Example:Input:	board	=	[[o,a,a,n],	[e,t,a,e],	[i,h,k,r],	[i,f,l,v]]	words	=	[oath,pea,eat,rain]Output:	[eat,oath]SolutionThis	might	not	be	the	simplest	way	of	solving	this
problem,	but	it	is	a	clear	application	of	a	trie.At	every	step,	you	will	have	built	some	candidate	string	and	need	to	check	if	it	belongs	to	the	dictionary.	A	hash	set	containing	all	the	words	in	the	dictionary	would	give	a	very	good	performance.	Why	bothering	with	a	trie	then?	Because	a	trie	can	tell	you	whether	that	path	is	worth	exploring	or	not,
improving	the	efficiency	of	our	solution.In	our	previous	example,	imagine	we	form	the	string	oa.We	can	check	if	this	prefix	(potential	word)	exists	in	our	trie.	It	exists	since	we	have	added	the	word	oath.	Now	imagine	we	keep	moving	right	through	our	board	and	form	the	string	oaa.In	our	trie,	there	are	no	words	that	contain	the	prefix	oaa,	so	we	can
backtrackat	this	point.With	a	hash	set	that	contains	all	the	words,	you	could	not	do	this	type	of	prefix	matching,	unless	you	create	two	different	tables:	one	for	prefixes	and	another	one	for	words.This	is	a	complex	problem	because	it	combines	different	elements	and	it	is	not	easy	to	implement,	so	do	not	get	discouraged	if	it	takes	you	a	few	tries	(no	pun
intended)	to	get	it	right.const	vector	dirs	{{1,	0},	{-1,	0},	{0,	1},	{0,	-1}};struct	Trie{	struct	Node{	bool	isWord;	unordered_map	children;	Node()	:	isWord(false){}	};	Node*	root;	Trie(){root	=	new	Node();}	void	insert	(const	string&	w){	Node*	cur	=	root;	for(const	auto	&c	:	w){	if(cur->children.find(c)	==	cur->children.end()){	cur->children[c]	=
new	Node();	}	cur	=	cur->children[c];	}	cur->isWord	=	true;	}	bool	hasPrefix(const	string	&prefix){	Node*	cur	=	root;	for(const	auto	&c	:	prefix){	if(cur->children.find(c)	==	cur->children.end()){	return	false;	}	cur	=	cur->children[c];	}	lastNode	=	cur;	return	cur	!=	nullptr;	}	bool	isValidWord(const	string	&w){	if(lastNode){	bool	res	=	lastNode-
>isWord;	return	res;	}	Node*	cur	=	root;	for(const	auto	&c	:	w){	cur	=	cur->children[c];	if(!cur){	return	false;	}	}	lastNode	=	cur;	return	lastNode->isWord;	}	void	deleteWord(){	lastNode->isWord	=	false;	lastNode	=	nullptr;	}	Node*	lastNode;};	Trie	t;public:vector	findWords(vector&	board,	const	vector&	words)	{	for(const	auto&	w	:	words)
t.insert(w);	vector	sol;	for(int	row	=	0;	row	<	board.size();	++row){	for(int	col	=	0;	col	<	board[0].size();	++col){	string	candidate	(1,	board[row][col]);	if(t.hasPrefix(candidate))	addWords(board,	row,	col,	sol,	candidate);	}	}	return	sol;}	void	addWords(vector	&board,	int	row,	int	col,	vector	&sol,	string	&candidate){	if(t.isValidWord(candidate)){
sol.push_back(candidate);	t.deleteWord();	}	const	char	old	=	board[row][col];	board[row][col]	=	'-';	for(const	auto	&d	:	dirs){	const	int	nrow	=	row	+	d[0];	const	int	ncol	=	col	+	d[1];	if(nrow	>=	0	&&	nrow	<	board.size()	&&	ncol	>=	0	&&	ncol	<	board[0].size()	&&	board[nrow][ncol]	!=	'.'	&&	t.hasPrefix(candidate	+	board[nrow][ncol]))
{candidate.push_back(board[nrow][ncol]);addWords(board,	nrow,	ncol,	sol,	candidate);candidate.pop_back();}}board[row][col]	=	old;}ChallengesDesign	your	ownautocomplete!15.	Two	instances	of	the	same	data	structureSome	problems	can	be	solved	by	using	two	different	instances	of	the	same	data	structure,	so	it	is	worth	keeping	it	in	mind	when
you	get	stuck	in	a	problem.	I	have	seen	it	mostly	with:Do	not	limit	yourself	to	these.Median	is	the	middle	value	in	an	ordered	integer	list.	If	the	size	of	the	list	is	even,	there	is	no	middle	value.	So	the	median	is	the	mean	of	the	two	middle	values.For	example,[2,3,4],	the	median	is	3[2,3],	the	median	is	(2	+	3)	/	2	=	2.5Design	a	data	structure	that
supports	the	following	two	operations:void	addNum(int	num)	Add	an	integer	number	from	the	data	stream	to	the	data	structure.double	findMedian()	Return	the	median	of	all	elements	so	far.Solutionclass	MedianFinder	{	priority_queue	L;	priority_queue	H;	public:	MedianFinder()	{	}	void	addNum(int	x)	{	if(L.empty()	==	false	&&	x	>	L.top())	{
H.emplace(x);	}	else	{	L.emplace(x);	}	if(H.size()	>	L.size()	+	1)	{	L.emplace(H.top());	H.pop();	}	else	if(L.size()	>	H.size()	+	1)	{	H.emplace(L.top());	L.pop();	}	}	double	findMedian()	{	if(H.size()	==	L.size())	{	return	(H.top()	+	L.top())	*	0.5;	}	else	{	return	H.size()	>	L.size()	?	H.top()	:	L.top();	}	}};ChallengesIn	increasing	order	of
difficulty:Miscellanea16.Bit	manipulationThis	section	deserves	a	separate	article.	Here	I	will	list	some	basictricks	and	common	bit	manipulation	problems.This	isthe	most	comprehensive	siteI	have	found	on	this	topic.	Use	it	as	a	reference.Missing	numberGiven	an	array	containing	n	distinct	numbers	taken	from	0,	1,	2,	,	n,	find	the	one	that	is	missing
from	the	array.Example	1:SolutionThis	problem	can	be	solved	just	by	using	the	XOR	operator:Any	bit	XORed	with	itself	produces	a	0	->	a	^	a	=	0Any	bit	XORed	with	0	produces	the	original	bit	->	a	^	0	=	aXOR	is	associative	=	a	^	(b	^	c)	=	(a	^	b)	^	cIf	we	XOR	all	the	numbers	in	the	array	(integers	in	the	range	[0,n])	with	all	the	integers	in	[0	to	n],
the	pairs	will	producezeroesand	the	missing	number	will	be	XORed	with	0	(resulting	in	itself),	solving	our	problem.int	missingNumber(const	vector&	nums)	{	int	res	=	nums.size();	for(int	i	=	0;	i	<	nums.size();	++i)	res	^=	(i	^	nums[i]);	return	res;}Power	of	twoGiven	an	integer,	write	a	function	to	determine	if	it	is	a	power	of	two.SolutionI	got	this	one
in	an	interview.Powers	of	two	can	be	expressed	in	binary	as	a	leading	1	and	some	0s:With	this,	it	is	simple	to	figure	out	if	a	number	is	a	power	of	two	or	not.	You	can	achieve	fast	if	you	know	what	the	following	line	does	(I	am	sure	you	can	figure	it	out	on	your	own):This	trick	is	worth	knowing	since	it	is	used	a	lot.bool	isPowerOfTwo(int	n)	{	return	n	>
0	?	(n	&	(n	-	1))	==	0	:	false;}Number	of	1sWrite	a	function	that	takes	an	unsigned	integer	and	returns	the	number	of	1	bits	it	has	(also	known	as	the	Hamming	weight).Example	1:Input:	00000000000000000000000000001011Output:	3Explanation:	The	input	binary	string	00000000000000000000000000001011	has	a	total	of	three	1	bits.SolutionThis
problem	is	very	straightforward:	iterate	through	all	the	bits	in	the	input	and	count	how	many	how	of	them	are	1s.Try	to	use	the	trick	I	showed	you	in	the	previous	exercise	to	improve	the	performance	of	this	algorithm	(in	the	average	case).int	hammingWeight(uint32_t	n)	{	int	sum	=	0;	while	(n	!=	0)	{	sum++;	n	&=	(n	-	1);	}	return	sum;
}ChallengesThese	are	for	you	to	practice	the	previous	techniques:Single	numberGray	codeHamming	distancePower	of	417.	Top	K	ElementsThis	is	another	very	frequent	type	of	problem.	You	are	given	a	list	of	elements	and	have	to	return	the	top	K,	definingtopas:The	largest/smallestThe	closest/furthest	to	a	pointThe	most	frequent	in	the	listEtcI	have
seen	some	of	the	following	(or	some	sort	of	variation)	asked	in	interviews.There	is	no	single	data	structure	that	will	always	give	the	right	solution,	but	the	following	elements	are	very	useful:Hash	tablePriority	queueSorting	(the	input	or	as	an	intermediate	step)Priority	queues	usually	provide	a	better	complexity.Top	k	frequent	wordsGiven	a	non-empty
list	of	words,	return	the	k	most	frequent	elements.	Your	answer	should	be	sorted	by	frequency	from	highest	to	lowest.	If	two	words	have	the	same	frequency,	then	the	word	with	the	lower	alphabetical	order	comes	first.Example	1:Input:	[i,	love,	leetcode,	i,	love,	coding],	k	=	2Output:	[i,	love]Explanation:	i	and	love	are	the	two	most	frequent	words.
Note	that	i	comes	before	love	due	to	a	lower	alphabetical	order.SolutionPretty	straightforward:	count	how	many	times	each	word	appears	(using	a	hash	table)	andsomehowreturn	the	k	most	common	elements.For	this	last	part,	you	either:Put	all	the	elements	with	its	frequencies	in	an	array	and	sort	itOrIt	is	worth	knowing	this	second	approach	since	it
can	be	applied	to	other	problems.Here	is	a	simple	solution	in	C++	using	a	priority	queue.vector	topKFrequent(const	vector&	words,	int	k)	{	map	freq;	for(const	auto	&w	:	words)	freq[w]++;	auto	l	=	[](const	pair	&	p1,	const	pair	&p2){	if(p1.first	==	p2.first)	return	p1.second	<	p2.second;	else	return	p1.first	>	p2.first;	};	priority_queue	pq(l);	for(auto
it	=	freq.begin();	it	!=	freq.end();	++it){	if(pq.size()	<	k){	pq.push({it->second,	it->first});	}	else	{	auto	top	=	pq.top();	if(top.first	<	it->second){	pq.pop();	pq.push({it->second,	it->first});	}	}	}	vector	sol	(k);	while(!pq.empty()){	sol[--k]	=	pq.top().second;	pq.pop();	}	return	sol;	}VariationK	closest	points	to	originWe	have	a	list	of	points	on	the	plane.
Find	the	K	closest	points	to	the	origin	(0,	0).	Here,	the	distance	between	two	points	on	a	plane	is	the	Euclidean	distance.You	may	return	the	answer	in	any	order.	The	answer	is	guaranteed	to	be	unique	(except	for	the	order	that	it	is	in.)Example	1:Input:	points	=	[[1,3],[-2,2]],	K	=	1Output:	[[-2,2]]SolutionThe	obvious	solution	is	to	compute	the	distance
to	every	single	point,	add	them	to	an	array,	sort	and	get	the	top	k.	This	is	fine,	but	it	can	be	improved	with	a	priority	queue.We	use	amax	heap,	where	the	root	of	the	heap	is	the	maximum	element	of	the	heap.	Why	the	maximum?	Our	heap	contains	the	K	points	closest	to	the	origin	and	the	root	points	to	the	element	that	is	the	furthest	from	the	origin
amongst	all	the	other	points.	If	we	find	a	point	closer	to	this	one,	it	may	still	be	further	than	the	rest,	but	we	need	to	drop	our	current	top	and	add	this	new	point	to	the	heap.typedef	pair	pivi;public:	vector	kClosest(const	vector&	points,	int	K)	{	auto	l	=	[]	(const	pivi&	p1,	const	pivi	&p2)	{	return	p1.first	<	p2.first;	};	priority_queue	pq(l);	for(const	auto
&p	:	points){	//Avoid	taking	the	square	root.	Won't	change	the	result	and	it's	faster	const	int	d	=	p[0]	*	p[0]	+	p[1]	*	p[1];	if(pq.size()	<	K)	pq.push({d,	{p[0],	p[1]}});	else	if(pq.top().first	>	d){	pq.pop();	pq.push({d,	{p[0],	p[1]}});	}	}	vector	sol;	for(int	i	=	1;	i	2->4,	1->3->4Output:	1->1->2->3->4->4SolutionWe	solve	this	problem	with	the	same	Two
pointer	technique	we	saw	at	the	beginning	of	this	article.	In	this	case,	we	traverse	linked	lists	instead	of	arrays,	but	the	same	ideas	apply.ListNode*	mergeTwoLists(ListNode*	l1,	ListNode*	l2)	{	ListNode	dh(1),	*curr	=	&dh;	while(l1	&&	l2){	if(l1->val	val)	{	curr->next	=	l1;	l1	=	l1->next;	}	else	{	curr->next	=	l2;	l2	=	l2->next;	}	curr	=	curr->next;	}
if(l1){	curr->next	=	l1;	}	else	if(l2)	{	curr->next	=	l2;	}	return	dh.next;}Merge	k	sorted	listsGiven	an	array	of	linked-lists	lists,	each	linked	list	is	sorted	in	ascending	order.Merge	all	the	linked-lists	into	one	sort	linked-list	and	return	it.Example	1:Input:	lists	=	[[1,4,5],[1,3,4],[2,6]]Output:	[1,1,2,3,4,4,5,6]Explanation:	The	linked-lists	are:[1->4->5,	1->3-
>4,	2->6]merging	them	into	one	sorted	list:1->1->2->3->4->4->5->6SolutionThis	is	the	general	version	of	the	previous	problem.	As	I	said,	you	can	reduce	this	problem	to	many	instances	of	the	previous	problem	by	merging	lists	2	at	a	time.	However,	here	I	will	present	a	more	efficient	solution.Now,	instead	of	two	sorted	lists,	we	have	K.	We	need	to
create	a	list	from	picking	the	next	minimum	element	of	all	the	lists.	Since	they	are	sorted,	it	will	be	the	first	element	of	one	of	these	lists.	Luckily,	there	is	a	data	structure	that	returns	its	minimum	element	in	O(1)	and	has	an	insertion	complexity	of	O(log	K):	a	priority	queue.For	every	list,	we	add	to	the	priority	queue	a	pair	containing:The	head	of	that
listAn	index	to	remember	to	which	list	that	element	belongsAfter	we	pop	an	element,	we	add	its	value	to	our	solution	and	add	to	the	priority	queue	the	new	head	of	that	list	(the	pair	stores	the	value	and	the	index	of	the	list).With	this	information,	try	to	solve	the	problem.	You	will	learn	much	more	from	it	than	from	reading	my	solution	without	trying
first.ListNode*	mergeKLists(vector&	lists)	{	typedef	pair	pni;	auto	comp	=	[](const	pni	&	p1,	const	pni&	p2)	{	return	p1.first->val	>	p2.first->val;	};	priority_queue	pq	(comp);	for(int	i	=	0;	i	<	lists.size();	++i){	if(lists[i]){	pq.push({lists[i],	i});	lists[i]	=	lists[i]->next;	}	}	ListNode	dh(-1),	*curr	=	&dh;	while(!pq.empty()){	const	auto	p	=	pq.top();
pq.pop();	curr->next	=	p.first;	curr	=	curr->next;	ListNode*	next	=	lists[p.second];	if(next){	int	idx	=	p.second;	pq.push({next,	idx});	lists[p.second]	=	lists[p.second]->next;	}	}	return	dh.next;}19.Rolling	hashRabin	Karpis	a	great	example	of	how	to	design	a	simple	and	efficient	algorithm	using	intelligently	a	rolling	hash	function.	It	can	be	used	to	find
a	stringsin	a	textt.The	basic	ideas	that	you	need	to	remember	to	be	able	to	reconstruct	this	algorithm	are	the	following:This	is	an	improvement	over	the	brute	force	method,	where	you	comparesand	every	candidate	substring,c,	which	is	inefficient.If	two	strings	are	the	same,	they	will	produce	the	same	hash.The	inverse	is	not	true:	two	different	strings
may	produce	the	same	hash.Using	a	rolling	hash	function	we	can	compute	the	hash	of	a	new	string	in	O(1)If	we	put	all	this	together,	we	will	efficiently	compute	hashes	and	only	comparecandswhen	they	have	the	same	hash,	reducing	the	number	of	comparisons	and	thus	the	average	complexity	of	our	algorithm	(worst	case,	we	need	to	compare	all
substrings	and	are	back	to	the	brute	force	method).Find	string	in	textReturn	the	index	of	the	first	occurrence	of	needle	in	a	haystack,	or	-1	if	the	needle	is	not	part	of	the	haystack.Example	1:Input:	haystack	=	hello,	needle	=	llOutput:	2Example	2:Input:	haystack	=	aaaaa,	needle	=	bbaOutput:	-1SolutionBased	on	the	above	paragraphs,	try	to	code	the
Rabin-Karp	algorithm	on	your	own	to	solve	this	problem.	int	strStr(const	string&	haystack,	const	string&	needle)	{	int	nsize	=	needle.size();	if(nsize	==	0)	return	0;	int	hsize	=	haystack.size();	if(nsize	>	hsize)	return	-1;	int	msbPower	=	1;	int	nhash	=	0;	int	hhash	=	0;	const	int	mod	=	10000009;	//A	big	prime	number	for(int	i=0;	i	0	and	p[i]	!=	p[j]:	j	=
lps[j	-	1]	if	p[i]	==	p[j]:	j	+=	1	lps[i]	=	j	return	lps	lps	=	build_lps(pattern)	i	=	j	=	0	while	i	<	len(text):	if	text[i]	==	pattern[j]:	i	+=	1	j	+=	1	if	j	==	len(pattern):	return	i	-	j	else:	if	j	!=	0:	j	=	lps[j	-	1]	else:	i	+=	1	return	-1	Time	Complexity:	O(n	+	m)	19.	Floyd's	Cycle	Detection	When	to	Use:	Detect	cycles	in	linked	lists.	Example:	Fast/slow	pointers.	def
has_cycle(head):	slow	=	fast	=	head	while	fast	and	fast.next:	slow	=	slow.next	fast	=	fast.next.next	if	slow	==	fast:	return	True	return	False	Time	Complexity:	O(n)	20.	Meet-in-the-Middle	When	to	Use:	Split	large	problems	into	halves	(e.g.,	subset	sum).	Example:	Subset	sum	for	large	`n`.	def	subset_sum(arr,	target):	def	generate_subsets(arr):	subsets
=	[]	n	=	len(arr)	for	mask	in	range(1

