

I'm not a robot

Seems like cookies are disabled on this browser, please enable them to open this website. It includes AI that generates DSA solutions in four languages: C, C++, Java, and Python. Seems like cookies are disabled on this browser, please enable them to open this website. Source: Update 18 October 2019: I have created a curation of Leetcode problems which I personally use to prepare for technical interviews. Stars are welcome, and feel free to fork it for your own modification and use! I'll be adding more questions in time! :If you're looking for a new job, use Triplebyte to interview once and apply to multiple top tech companies! This post draws on my personal experiences and challenges over the past term at school, which I entered with hardly any knowledge of DSA (data structures and algorithms) and problem-solving strategies. As a self-taught programmer, I was a lot more familiar and comfortable with general programming, such as object-oriented programming, than with the problem-solving skills required in DSA questions. This post reflects my journey throughout the term and the resources I turned to in order to quickly improve my data structures, algorithms, and problem-solving skills. Problem: You know the theory, but you get stuck on practical applications! I faced this issue early in the term when I didn't know what I didn't know, which is a particularly pernicious problem. I understand the theory well enough for instance, what a linked list was, how it worked, its various operations and their time complexities, the ADTs (abstract data types) it supported, and how the ADT operations were implemented. But because I didn't know what I didn't know, I couldn't identify gaps in my understanding of its practical applications in problem-solving. The different types of questions an example of a data structures question: describe how you would insert a node in a linked list and state the time complexity. And heres an algorithms question: search for an element in a rotated sorted array and state the time complexity. Finally, a problem-solving question, which I consider to be at a higher level than the previous two, might briefly describe a scenario, and list the requirements of the problem. In an exam it might ask for a description of the solution. In competitive programming it might require you to submit working code without explicitly providing any data structures or algorithms. In other words, you are expected to apply the most applicable data structures and algorithms to solve the problem as efficiently as possible. How can you improve your data structures, algorithms, and problem-solving skills? I primarily use three websites for practice: HackerRank, LeetCode, and Kattis. They are largely similar, especially the first two, but not identical. I find that each site has a slightly different focus, each of which is immensely helpful in its own way. I would loosely categorize the skills required for problem-solving into knowledge of data structures/knowledge of the application of data structures and algorithms. The first two could be considered the primitives, or building blocks, that go into the third, which is about working with data structures. For instance: You get the idea. Some of the questions might not ever be directly applicable in problem-solving. But they are great for conceptual understanding, which is extremely important in any case. HackerRank does not have freely accessible model solutions, although the discussions section is usually full of hints, clues, and even working code snippets. I have found those to be adequate so far, although you might have to step through the code a line at a time in an IDE to really understand something. Knowledge of algorithms: HackerRank also has an algorithms section, although I prefer LeetCode for this. I found LeetCode's variety of problems to be a lot wider, and I really like that a lot of problems have solutions with explanations and even time complexities. A great starting point would be LeetCode's top 100 liked questions. Some questions which I thought were great: Unlike data structures questions, the focus here isn't so much about working with or manipulating data structures, but rather, how to do something. For instance, the accounts merge problem is primarily on the application of standard UFDS algorithms. The searching in a rotated sorted array problem presents a twist on binary search. And sometimes you learn an entirely new problem-solving technique. For example, the sliding window solution for the longest continuous increasing subsequence problem. Knowledge of the application of data structures and algorithms: Finally, I use Kattis to improve my general problem-solving skills. The Kattis Problem Archive has a bunch of programming problems from various sources, such as competitive programming competitions, around the world. Kattis can be incredibly frustrating because there are no official solutions or a discussion forum, (unlike HackerRank and LeetCode). Also, test cases are private. I have a handful of pending Kattis problems which I can't solve not because I don't know the solution, but because I can't figure out the bug. Its my least favorite site among the three for practicing and learning, and I didn't spend a lot of time on it. Other resources: Geeksforgeeks is another very valuable resource for learning about data structures and algorithms. I like how it provides code snippets in various languages, usually C++, Java, and Python, which you can copy and paste into your IDE to step through line-by-line. Finally, there is trusty old Google, which would lead you to GeeksForGeeks most of the time, and YouTube, for visual explanations. Conclusion: At the end of the day, however, there are no shortcuts. You just have to dive into it head-first start writing code, debugging code, and reading other people's correct code to figure out where, how, and why you went wrong. Its tough, but you get better with each attempt, and it gets easier as you get better. Im nowhere near the level of competency I want to be, but I've definitely come a long way since I started. :)

Category: Array, Backtracking, Binary Tree, Bit Manipulation, BST, Divide & Conquer, Dynamic Programming, Graph, Hashing, List, Matrix, Programming, Puzzles, Queue, Sorting, Stack, String, Trie, Tag, Algorithm, Binary Search, Bottom-up, Breadth-First Search, Depth-First Search, Greedy, Hashing, Must Know, Priority Queue, Recursive, Sliding Window, Top-down, Difficulty: Easy, Medium, Hard, Beginner, Curated Lists, Top 100, Most Liked, Top 50, Classic Top 25, Algorithms, Top 10, DP1. Find a pair with the given sum in an array, Sorting, Amazon, Hashing, Top-Classic, Top-Liked, Easy2, Check if a subarray with a sum exists or not, Array, Hashing, Top-Liked, Medium3. Print all subarrays with 0 sum, Array, Amazon, Hashing, Top-Liked, Medium4. Sort binary array in linear time, Array, Sorting, Top-Liked, Easy3. Find maximum length subarray having a given sum, Array, Hashing, Top-Classic, Top-Liked, Medium5. Find the largest subarray having an equal number of 0s and 1s, Array, Hashing, Top-Liked, Medium7. Find the maximum product of two integers in an array, Array, Sorting, Top-Liked, Easy15. Sort the largest subarray formed by consecutive integers, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium14. Find the maximum difference between two array elements that satisfies given constraints, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium20. Find minimum sum of subarray of size k, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium24. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Dijkstra's Algorithm, Amazon, Microsoft, Must Know, TopAlg0, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium23. Maximum Sum Circular Subarray, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium24. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, Microsoft, Must Know, TopAlg0, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length, Array, Subarray Problem, Maximum Sum Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium26. Find maximum sequence of continuous 1s formed by replacing at most k 0s by 1s, Array, Sliding Window, Medium27. Find minimum sum of subarray of size k, Array, Amazon, Sliding Window, Medium28. Maximum Product Subarray Problem, Kadane's Algorithm, Array, Amazon, TopClassic, TopAlg0Easy22. Print continuous subarray with maximum sum, Array, Amazon, Hashing, Top-Classic, Top-Liked, Medium25. Find all distinct combinations of a given length

linked list using merge sortDivide & Conquer, Linked List, SortingRecursiveMedium610. Stack Implementation using a Linked ListBasic, Linked List, StackBeginner611. Clock Angle ProblemProgramming PuzzlesAlgorithm, AmazonTopAlgoEasy612. Add two numbers without using the addition operator | 5 methodsProgramming PuzzlesEasy613. Generate the power set of a given set, setArray, Backtracking, Bit ManipulationAmazon, RecursiveMedium614. Implement power function without using multiplication and division operatorsProgramming PuzzlesRecursiveEasy615. Print all numbers between 1 to N without using a semicolonProgramming PuzzlesRecursiveMedium616. Swap two numbers without using a third variable | 5 methodsBit Manipulation, Programming PuzzlesEasy617. Determine if the condition to print the specific outputProgramming PuzzlesRecursiveEasy18. Find maximum and minimum value of a triplet without using a conditional statementProgramming PuzzlesMedium619. Find numbers represented as the sum of two cubes for two different pairsProgramming PuzzlesMedium620. Print Hello World with empty main function | 3 methodsProgramming PuzzlesMedium621. Tower of Hanoi ProblemProgramming PuzzlesAlgorithm, RecursiveMedium622. Print all numbers between 1 to N without using any loop | 4 methodsProgramming PuzzlesRecursiveEasy623. Print a semicolon without using a semicolon anywhere in the programProgramming PuzzlesEasy624. Multiply two numbers without using a multiplication operator or loopsProgramming PuzzlesRecursiveEasy625. Find the square of a number without using the multiplication and division operatorBit Manipulation, Divide & Conquer, Programming PuzzlesEasy626. Check if a number is even or odd without using any conditional statementProgramming PuzzlesEasy627. Set both elements of a binary array to 0 in a single lineArray, Programming PuzzlesMedium628. Find minimum number without using conditional statement or ternary operatorBit Manipulation, Divide & Conquer, Programming PuzzlesEasy629. Perform division of two numbers without using division operatorBit Manipulation, Programming PuzzlesRecursiveMedium630. Generate 0 and 1 with 75% and 25% probabilityBit Manipulation, C, Programming PuzzlesMedium631. Generate random numbers with equal probabilityC, Programming PuzzlesRecursiveMedium632. Return 0, 1, and 2 with equal probability using a specified functionC, Programming PuzzlesMedium633. Generate numbers from 1 to 7 with equal probability using a specific functionC, Programming PuzzlesMedium634. Get 0 and 1 with equal probability from an array according to given probabilitiesArray, Programming PuzzlesMedium635. Generate fair results from a biased coinProgramming PuzzlesHard637. Implement ternary operator without using conditional expressionsC, Programming PuzzlesMedium638. Determine if two integers are equal without using comparison and arithmetic operatorsBit Manipulation, C, Programming PuzzlesHard639. Compute modular division without division and modulo operatorBit Manipulation, Programming PuzzlesEasy640. Write a C/C++ program without using the math function, C/C++, Programming PuzzlesEasy641. Single line expressions to swap two integers in JavaBit Manipulation, Java, Programming PuzzlesEasy642. Find maximum and minimum of two integers without using any arithmetic operatorsProgramming PuzzlesHard644. Sort a given set of problems with using conditional operator or division operatorsBit Manipulation, Programming PuzzlesMedium645. Quick implementation to sort an array in C, C++, C++ (+) (Using Ternary) Java. Java Implementation using a Linked ListBasic, Linked List, QueueBeginner647. Insert elements into a stack using the stack data structureQueue, StackRecursiveMedium649. Efficiently print all nodes between two given levels in a binary treeBinary Tree, QueueBreadth-First Search, Depth-First Search, Hashing, RecursiveEasy650. Check Knapsack Problem | Find the shortest path from source to destinationMatrix, QueueAlgorithm, Breadth-First Search, TopClassic, TopLikedHard651. Shortest path in a maze Le AlgorithmMatrix, QueueAlgorithm, Breadth-First Search, Maze, RecursiveTopLikedHard652. Find the shortest safe route in a field with sensors presentMatrix, QueueBreadth-First Search, MazeBreadth-First Search, MazeBreadth-First Search, Depth-First Search, Must Know, RecursiveTopAlgoMedium654. Count number of islandsMatrix, QueueAmazon, Breadth-First SearchTopLikedMedium55. Find shortest path from source to destination in a matrix that satisfies given constraintsMatrix, QueueBreadth-First Search, Maze, RecursiveTopLikedHard656. Generate binary numbers between 1 to n using a queueBit Manipulation, Queue, StringAmazonEasy657. Print nodes of a binary tree in vertical orderBinary Tree, Linked List, QueueBreadth-First Search, Depth-First Search, RecursiveMedium658. Print all nodes of a perfect binary tree in a specific orderBinary Tree, QueueBreadth-First Search, Depth-First Search, Hashing, RecursiveTopLikedHard659. Print left view of a binary treeBinary Tree, QueueAmazon, Breadth-First Search, Depth-First Search, Hashing, RecursiveTopLikedEasy660. Find the next node at the same level as the given node in a binary treeBinary Tree, QueueAmazon, Breadth-First Search, Depth-First Search, MicroSoft, RecursiveMedium661. Check if a binary tree is a complete binary tree or notBinary Tree, QueueBreadth-First Search, RecursiveEasy662. Print minimum path required to convert all negative values in a matrixMatrix, QueueBreadth-First Search, RecursiveHard663. Print corner nodes of every level in a binary treeBinary Tree, QueueAmazon, Breadth-First Search, QueueBreadth-First Search, Depth-First Search, Hashing, RecursiveHard667. Check if a binary tree is a min-heap or notBinary Tree, Heap, QueueBreadth-First Search, Depth-First Search, RecursiveMedium668. Invert alternate levels of a perfect binary treeBinary Tree, Queue, StackBreadth-First Search, Depth-First Search, RecursiveHard669. Convert a binary tree into a MinHeapBST, Heap, Linked List, QueueDepth-First Search, RecursiveHard670. Snake and Ladder ProblemGraph, QueueAlgorithm, Breadth-First SearchTopClassic, TopLikedHard671. Find the shortest distance of every cell from a landmark inside a mazeMatrix, QueueBreadth-First Search, MazeHard672. Convert a multilevel linked list to a singly linked listLinked List, QueueMedium673. Check if an undirected graph contains a cycle or notGraph, QueueAmazon, Breadth-First Search, RecursiveMedium674. Find maximum cost path in a graph from a given source to a given destinationGraph, QueueBreadth-First SearchTopLikedMedium675. Total path in a diagram from a given source to a destination having exactly m edgesGraph, QueueBreadth-First SearchMedium677. Traverse a given directory using BFS and DFS in JavaJav, QueueBreadth-First Search, Depth-First Search, RecursiveEasy678. Perform vertical traversal of a binary treeBinary Tree, QueueAmazon, Breadth-First Search, Depth-First Search, Hashing, RecursiveMedium679. Compute the maximum number of nodes at any level in a binary treeBinary Tree, QueueBreadth-First Search, Depth-First Search, Hashing, RecursiveEasy680. Print right view of a binary treeBinary Tree, QueueBreadth-First Search, Depth-First Search, Hashing, RecursiveTopLikedHard681. Find the minimum depth of a binary treeBinary Tree, QueueAmazon, Breadth-First Search, Depth-First Search, QueueBreadth-First Search, RecursiveEasy682. Depth-First Search (DFS) or Breadth-First Search, Depth-First Search, Must KnowBeginner683. Bipartite GraphGraph, QueueAlgorithm, Breadth-First SearchTopLikedMedium684. Compute the least cost path in a weighted digraph using BFSGraph, QueueBreadth-First Search, RecursiveMedium685. Find the path between given vertices in a directed graphBacktracking, Graph, QueueBreadth-First Search, Depth-First Search, RecursiveEasy686. Construct a directed graph from an undirected graph that satisfies given constraintsGraph, QueueBreadth-First Search, Depth-First Search, RecursiveMedium687. Trie Implementation C, C++, C++ (+) (Memory Efficient), Java, PythonTriBeginner688. Longest Common Prefix in a given set of stringsString, TrieDepth-First Search, Recursive, TrieEasy692. Find first k maximum occurring words in a given set of stringsHeap, String, TrieDepth-First Search, Priority Queue, Recursive, TrieMedium693. Find duplicate rows in a binary matrixMatrix, TrieAmazon, Hashing, TrieMedium694. Word Break Problem Using Trie Data StructureDynamic Programming, String, TrieAmazon, Bottom-up, Recursive, TrieMedium695. Generate a list of possible words from a character matrixBacktracking, Matrix, TrieDepth-First Search, Hashing, TrieMedium697. Find the shortest unique prefix for every word in an arrayString, TrieDepth-First Search, Recursive, TrieMedium698. Find number of customers who could not get any computerStringEasy700. Print all pairs of anagrams in a set of stringsString, TrieDepth-First Search, RecursiveMedium702. Find total arrangements such that no two balls of the same color are togetherDynamic ProgrammingRecurcive, Top-downHard703. Determine whether a BST is skewed from its preorder traversalString, BSTEasy704. Determine whether two nodes lie on the same path in a binary treeBinary TreeDepth-First Search, RecursiveEasy705. Find height of a binary tree represented by the parent arrayAlgo, Binary Tree, Dynamic ProgrammingBottom-up, Recursive, Top-downMedium706. In-place merge two height-balanced BSTST, Linked ListDepth-First Search, RecursiveHard707. Check if removing an edge can split a binary tree into two equal size treesBinary TreeDepth-First Search, RecursiveEasy708. Determine whether two nodes lie on the same path in a binary treeBinary TreeDepth-First Search, RecursiveMedium712. Count nodes in a BST that lies within a given rangeBSTDepth-First Search, RecursiveEasy713. Check if a number is a power of 8 or notBit ManipulationMedium714. Check if a number is a perfect squareDivide & Conquer, Programming PuzzlesAlgorithm, BinarySearchEasy715. Shrink an array by removing triplets that satisfy given constraintsArray, Dynamic ProgrammingRecurcive, Top-downHard716. Count distinct permutations of an array that sums to a targetArray, Dynamic ProgrammingRecurciveMedium717. Check if a string can be constructed from another stringStringEasy718. Check children-sum property in a binary treeBinary TreeDepth-First Search, RecursiveEasy719. Check for reading. To share your code in the comments, please use our online compiler that supports C, C++, Java, Python, JavaScript, C#, PHP, and many more popular programming languages. Like us? Refer us to your friends and support our growth. Happy coding :) This is the article I wish I had read when I started coding. I will dive deep into 20 problem-solving techniques that you must know to excel at your next interview. They have helped me at work too and even given me ideas for a side project I am working on. Also, the last section includes step-by-step guideexplaining how to learn data structures and algorithms, with examples. Furthermore, I recommend you read this post, where I outlined a high-level strategy to prepare for your next coding interview as well as the top mistakes to avoid. I have grouped these techniques in:Pointer basedRecursion basedSorting and searchingExtending basic data structuresMiscellaneous will explain each of them, show how to apply them to coding problems, and leave you some exercises so that you can practice on your own. For your convenience, I have copied here the problem statements, but I have left links to all of the exercises. You can copy-paste my solution and play around with it. I strongly recommend you code your solution and see if it passes the tests. Some of the questions are better explained through an image or diagram. For these, I have left a comment asking you to open the link to get a graphical description of the problem. This list is part of the study notes that I took before I applied to Amazon. I hope they will be as useful to you as they have been to me. Pointer based techniques! Two PointersThis technique is very useful for unsorted arraysand arrays whose elements we want to group. The idea is to use two (or more pointers) to split the array into different areas or groups based on some condition:Elements smaller than, equal to and greater than a certain valueElements whose sum is too small or too largeEtc. The following examples will help you understand this principle.Two sumGiven an array of integers that is already sorted in ascending order, find two numbers such that they add up to a specific target number. The function twoSum should return indices of the two numbers such that they add up to the target, where index must be less than index2.Notes:Your returned answers (both index and index2) are not zero-based. You may assume that each input will have exactly one solution and you may not use the same element twice.Example:Input: numbers = [2,7,11,15], target = 9Output: [1,2]Explanation: The sum of 2 and 7 is 9. Therefore index1 = 1, index2 = 2.SolutionSince the arrays sorted, we know that:The largest sum is equal to the sum of the last 2 elementsThe smallest sum is equal to the sum of the first 2 elementsFor any indexin [0, a.size() - 1] >= a[i] + a[j]With this, we can design the following algorithm:We keep 2 pointers:, starting at the first element of the array, starting at the last. If the sum of a[i] + a[j] is smaller than our target, we increment i by one (to change the smallest operand in the addition for another one equal or smaller-1). We do this until a[i] + a[j] equals our target or i and j point to the same element (since we cannot use the same element twice) or have crossed, indicating there is no solution. Here is a simple C++ implementation:vector<int> twoSum(const vector<int> & a, int target) { int i = 0, r = a.size() - 1; vector<int> sol; while(i < r) { if(a[i] + a[r] == target) { sol.push_back(i + 1); if(target == sum) { sol.push_back(r + 1); break; } else if (target < sum) { i++; } else { r--; } } return sol; } The time complexity is O(1), since we may need to traverse the N elements of the array to find the solution. The space complexity is O(1), since we only need two pointers, regardless of how many elements the array contains. There are other ways of solving this problem, such as using a hash table, for example, but I have used it as an illustration of the two pointer technique.ChallengesHere are two variants of this exercise:the sum of all subarrays or sum. They can be solved similarly byredcuingthem to the very same problem. This is a very common technique:transform the problem solution you don't know to a problem that you can solve. Given a sorted array, nums, remove the duplicatesin-place such that each element appears only once and return the new length. Do not allocate extra space for another array, you must do this by modifying the input array in-place with O(1) extra memory.Example:Given nums = [1,1,2,2,3,3,4],Output: 5It doesn't matter what values are set beyond the returned length.SolutionThe array is sorted, we want to move duplicates to the end of the array, without anything else being moved. We will need one pointer to iterate through the array and one pointer, n, one pointer to iterate through the area that contains no duplicates, 0..n. The logic is as follows: If the value at the index i is not equal to the value at index i + 1, then we move the value at index i to index n, i.e. nums[i] = 1, nums[n] = 1, n = 1; if(i < n - 1) { nums[i + 1] = 1, n = 2; ... } if(i < n - 2) { ... } ... if(i < n - 3) { ... } ... if(i < n - 4) { ... } ... if(i < n - 5) { ... } ... if(i < n - 6) { ... } ... if(i < n - 7) { ... } ... if(i < n - 8) { ... } ... if(i < n - 9) { ... } ... if(i < n - 10) { ... } ... if(i < n - 11) { ... } ... if(i < n - 12) { ... } ... if(i < n - 13) { ... } ... if(i < n - 14) { ... } ... if(i < n - 15) { ... } ... if(i < n - 16) { ... } ... if(i < n - 17) { ... } ... if(i < n - 18) { ... } ... if(i < n - 19) { ... } ... if(i < n - 20) { ... } ... if(i < n - 21) { ... } ... if(i < n - 22) { ... } ... if(i < n - 23) { ... } ... if(i < n - 24) { ... } ... if(i < n - 25) { ... } ... if(i < n - 26) { ... } ... if(i < n - 27) { ... } ... if(i < n - 28) { ... } ... if(i < n - 29) { ... } ... if(i < n - 30) { ... } ... if(i < n - 31) { ... } ... if(i < n - 32) { ... } ... if(i < n - 33) { ... } ... if(i < n - 34) { ... } ... if(i < n - 35) { ... } ... if(i < n - 36) { ... } ... if(i < n - 37) { ... } ... if(i < n - 38) { ... } ... if(i < n - 39) { ... } ... if(i < n - 40) { ... } ... if(i < n - 41) { ... } ... if(i < n - 42) { ... } ... if(i < n - 43) { ... } ... if(i < n - 44) { ... } ... if(i < n - 45) { ... } ... if(i < n - 46) { ... } ... if(i < n - 47) { ... } ... if(i < n - 48) { ... } ... if(i < n - 49) { ... } ... if(i < n - 50) { ... } ... if(i < n - 51) { ... } ... if(i < n - 52) { ... } ... if(i < n - 53) { ... } ... if(i < n - 54) { ... } ... if(i < n - 55) { ... } ... if(i < n - 56) { ... } ... if(i < n - 57) { ... } ... if(i < n - 58) { ... } ... if(i < n - 59) { ... } ... if(i < n - 60) { ... } ... if(i < n - 61) { ... } ... if(i < n - 62) { ... } ... if(i < n - 63) { ... } ... if(i < n - 64) { ... } ... if(i < n - 65) { ... } ... if(i < n - 66) { ... } ... if(i < n - 67) { ... } ... if(i < n - 68) { ... } ... if(i < n - 69) { ... } ... if(i < n - 70) { ... } ... if(i < n - 71) { ... } ... if(i < n - 72) { ... } ... if(i < n - 73) { ... } ... if(i < n - 74) { ... } ... if(i < n - 75) { ... } ... if(i < n - 76) { ... } ... if(i < n - 77) { ... } ... if(i < n - 78) { ... } ... if(i < n - 79) { ... } ... if(i < n - 80) { ... } ... if(i < n - 81) { ... } ... if(i < n - 82) { ... } ... if(i < n - 83) { ... } ... if(i < n - 84) { ... } ... if(i < n - 85) { ... } ... if(i < n - 86) { ... } ... if(i < n - 87) { ... } ... if(i < n - 88) { ... } ... if(i < n - 89) { ... } ... if(i < n - 90) { ... } ... if(i < n - 91) { ... } ... if(i < n - 92) { ... } ... if(i < n - 93) { ... } ... if(i < n - 94) { ... } ... if(i < n - 95) { ... } ... if(i < n - 96) { ... } ... if(i < n - 97) { ... } ... if(i < n - 98) { ... } ... if(i < n - 99) { ... } ... if(i < n - 100) { ... } ... if(i < n - 101) { ... } ... if(i < n - 102) { ... } ... if(i < n - 103) { ... } ... if(i < n - 104) { ... } ... if(i < n - 105) { ... } ... if(i < n - 106) { ... } ... if(i < n - 107) { ... } ... if(i < n - 108) { ... } ... if(i < n - 109) { ... } ... if(i < n - 110) { ... } ... if(i < n - 111) { ... } ... if(i < n - 112) { ... } ... if(i < n - 113) { ... } ... if(i < n - 114) { ... } ... if(i < n - 115) { ... } ... if(i < n - 116) { ... } ... if(i < n - 117) { ... } ... if(i < n - 118) { ... } ... if(i < n - 119) { ... } ... if(i < n - 120) { ... } ... if(i < n - 121) { ... } ... if(i < n - 122) { ... } ... if(i < n - 123) { ... } ... if(i < n - 124) { ... } ... if(i < n - 125) { ... } ... if(i < n - 126) { ... } ... if(i < n - 127) { ... } ... if(i < n - 128) { ... } ... if(i < n - 129) { ... } ... if(i < n - 130) { ... } ... if(i < n - 131) { ... } ... if(i < n - 132) { ... } ... if(i < n - 133) { ... } ... if(i < n - 134) { ... } ... if(i < n - 135) { ... } ... if(i < n - 136) { ... } ... if(i < n - 137) { ... } ... if(i < n - 138) { ... } ... if(i < n - 139) { ... } ... if(i < n - 140) { ... } ... if(i < n - 141) { ... } ... if(i < n - 142) { ... } ... if(i < n - 143) { ... } ... if(i < n - 144) { ... } ... if(i < n - 145) { ... } ... if(i < n - 146) { ... } ... if(i < n - 147) { ... } ... if(i < n - 148) { ... } ... if(i < n - 149) { ... } ... if(i < n - 150) { ... } ... if(i < n - 151) { ... } ... if(i < n - 152) { ... } ... if(i < n - 153) { ... } ... if(i < n - 154) { ... } ... if(i < n - 155) { ... } ... if(i < n - 156) { ... } ... if(i < n - 157) { ... } ... if(i < n - 158) { ... } ... if(i < n - 159) { ... } ... if(i < n - 160) { ... } ... if(i < n - 161) { ... } ... if(i < n - 162) { ... } ... if(i < n - 163) { ... } ... if(i < n - 164) { ... } ... if(i < n - 165) { ... } ... if(i < n - 166) { ... } ... if(i < n - 167) { ... } ... if(i < n - 168) { ... } ... if(i < n - 169) { ... } ... if(i < n - 170) { ... } ... if(i < n - 171) { ... } ... if(i < n - 172) { ... } ... if(i < n - 173) { ... } ... if(i < n - 174) { ... } ... if(i < n - 175) { ... } ... if(i < n - 176) { ... } ... if(i < n - 177) { ... } ... if(i < n - 178) { ... } ... if(i < n - 179) { ... } ... if(i < n - 180) { ... } ... if(i < n - 181) { ... } ... if(i < n - 182) { ... } ... if(i < n - 183) { ... } ... if(i < n - 184) { ... } ... if(i < n - 185) { ... } ... if(i < n - 186) { ... } ... if(i < n - 187) { ... } ... if(i < n - 188) { ... } ... if(i < n - 189) { ... } ... if(i < n - 190) { ... } ... if(i < n - 191) { ... } ... if(i < n - 192) { ... } ... if(i < n - 193) { ... } ... if(i < n - 194) { ... } ... if(i < n - 195) { ... } ... if(i < n - 196) { ... } ... if(i < n - 197) { ... } ... if(i < n - 198) { ... } ... if(i < n - 199) { ... } ... if(i < n - 200) { ... } ... if(i < n - 201) { ... } ... if(i < n - 202) { ... } ... if(i < n - 203) { ... } ... if(i < n - 204) { ... } ... if(i < n - 205) { ... } ... if(i < n - 206) { ... } ... if(i < n - 207) { ... } ... if(i < n - 208) { ... } ... if(i < n - 209) { ... } ... if(i < n - 210) { ... } ... if(i < n - 211) { ... } ... if(i < n - 212) { ... } ... if(i < n - 213) { ... } ... if(i < n - 214) { ... } ... if(i < n - 215) { ... } ... if(i < n - 216) { ... } ... if(i < n - 217) { ... } ... if(i < n - 218) { ... } ... if(i < n - 219) { ... } ... if(i < n - 220) { ... } ... if(i < n - 221) { ... } ... if(i < n - 222) { ... } ... if(i < n - 223) { ... } ... if(i < n - 224) { ... } ... if(i < n - 225) { ... } ... if(i < n - 226) { ... } ... if(i < n - 227) { ... } ... if(i < n - 228) { ... } ... if(i < n - 229) { ... } ... if(i < n - 230) { ... } ... if(i < n - 231) { ... } ... if(i < n - 232) { ... } ... if(i < n - 233) { ... } ... if(i < n - 234) { ... } ... if(i < n - 235) { ... } ... if(i < n - 236) { ... } ... if(i < n - 237) { ... } ... if(i < n - 238) { ... } ... if(i < n - 239) { ... } ... if(i < n - 240) { ... } ... if(i < n - 241) { ... } ... if(i < n - 242) { ... } ... if(i < n - 243) { ... } ... if(i < n - 244) { ... } ... if(i < n - 245) { ... } ... if(i < n - 246) { ... } ... if(i < n - 247) { ... } ... if(i < n - 248) { ... } ... if(i < n - 249) { ... } ... if(i < n - 250) { ... } ... if(i < n - 251) { ... } ... if(i < n - 252) { ... } ... if(i < n - 253) { ... } ... if(i < n - 254) { ... } ... if(i < n - 255) { ... } ... if(i < n - 256) { ... } ... if(i < n - 257) { ... } ... if(i < n - 258) { ... } ... if(i < n - 259) { ... } ... if(i < n - 260) { ... } ... if(i < n - 261) { ... } ... if(i < n - 262) { ... } ... if(i < n - 263) { ... } ... if(i < n - 264) { ... } ... if(i < n - 265) { ... } ... if(i < n - 266) { ... } ... if(i < n - 267) { ... } ... if(i &