
	

https://fubup.godoxevez.com/989997340539287804807891716149186922077600?dejawusisunudadavijonoxilitekafavesokegurakonojoriwabezatokisawevanipatebajefibivuko=losurekuguforegetuxevulanokuwimukozudujixunagupokexitumagimafewufobuxifeguvomitunetugodenividusijerokekapukurefaxedulitofibapixufofatexibojaperodasogobedovamesoxetovonofemomitamijonuwarimilikekuxuvenoketileromi&utm_kwd=where+is+the+percent+button+on+ti+83+plus&jarivuxetunafupigijobaradinawiwawomite=nomulikafuwusugirizefasopaxujavoxevajavevotijeladafosobolipelifuvatafiwafifusafuwinifemegonafivitozosejakegijonalepezubujajefemanalokosavobiwi

Calculating	percentages	is	a	fundamental	skill	in	mathematics	that	we	encounter	in	various	aspects	of	our	lives.	Whether	you’re	a	student	tackling	homework	problems	or	a	professional	dealing	with	financial	data,	understanding	how	to	compute	percentages	accurately	is	essential.	Luckily,	with	the	advent	of	advanced	calculators	like	the	TI	84	Plus,
performing	percentage	calculations	has	become	more	efficient	and	convenient.	In	this	step-by-step	guide,	we	will	explore	how	to	unleash	the	power	of	the	TI	84	Plus	and	effortlessly	calculate	percentages,	saving	valuable	time	and	reducing	the	chances	of	errors.	The	TI	84	Plus	is	a	graphing	calculator	that	offers	a	wide	range	of	functions,	making	it	a
popular	choice	among	students,	teachers,	and	professionals	alike.	By	performing	percentage	calculations	on	this	sleek	device,	you	can	streamline	your	workflow	and	tackle	complex	problems	effortlessly.	This	guide	aims	to	walk	you	through	the	process,	ensuring	that	you	not	only	understand	how	to	use	the	TI	84	Plus	for	percentage	calculations	but
also	gain	confidence	in	applying	this	valuable	skill	to	various	scenarios.	So	let’s	dive	into	the	world	of	percentages	and	discover	the	secrets	of	leveraging	the	power	of	the	TI	84	Plus	calculator.	Basic	Features	and	Functions	A.	Brief	explanation	of	the	calculator’s	layout	and	buttons	The	TI	84	Plus	calculator	is	a	powerful	tool	for	various	mathematical
calculations,	including	percentage	calculations.	Before	diving	into	the	specifics	of	calculating	percentages,	it’s	important	to	have	a	basic	understanding	of	the	calculator’s	layout	and	buttons.	The	calculator	features	a	rectangular	shape	with	a	screen	at	the	top	and	a	keypad	below	it.	The	keypad	consists	of	various	buttons,	each	serving	a	specific
function.	Some	of	the	important	buttons	to	know	when	using	the	TI	84	Plus	for	percentage	calculations	include:	–	Numeric	Keypad:	This	section	consists	of	numbers	0-9,	allowing	you	to	input	values	when	performing	calculations.	–	Operation	Buttons:	These	buttons	include	addition	(+),	subtraction	(-),	multiplication	(×),	division	(÷),	and	the	equals	(=)
button	for	executing	calculations.	–	Navigation	Buttons:	The	calculator	features	arrow	keys	for	navigating	through	menus	and	moving	the	cursor.	–	Mode	Button:	This	button	is	used	to	access	different	modes,	such	as	degree/radian	mode,	to	ensure	accurate	calculations.	–	Clear	Button:	This	button	clears	the	calculator’s	screen	and	resets	any
previously	entered	values	or	calculations.	B.	Overview	of	the	main	functions	used	for	calculating	percentages	In	addition	to	familiarizing	yourself	with	the	layout	and	buttons	of	the	TI	84	Plus	calculator,	it’s	essential	to	understand	the	main	functions	used	for	calculating	percentages.	The	primary	functions	for	percentage	calculations	on	the	TI	84	Plus
include:	–	Entering	Values:	This	function	allows	you	to	input	the	original	number	and	the	percentage	value	you	want	to	calculate.	–	Converting	Percentage	to	Decimal:	Before	performing	calculations,	percentages	should	be	converted	to	decimals.	This	function	simplifies	the	conversion	process.	–	Calculating	the	Percentage	Amount:	This	function
determines	the	percentage	of	a	number	by	multiplying	the	original	number	by	the	percentage	value.	–	Calculating	the	Percentage	Change:	This	function	calculates	the	percentage	change	between	two	numbers.	–	Calculating	Markup	and	Discount:	Markup	refers	to	the	increase	in	price,	while	discount	represents	the	decrease.	This	function	helps
determine	the	markup	or	discount	by	using	percentages.	–	Solving	Percent	Problems:	This	function	assists	in	solving	various	types	of	percent	problems,	including	finding	the	percent	increase	or	decrease,	finding	the	original	quantity,	or	the	final	quantity.	–	Using	Parentheses:	Parentheses	are	essential	for	maintaining	the	order	of	operations	when
performing	complex	percentage	calculations.	–	Rounding	and	Approximating:	This	function	allows	you	to	round	or	approximate	percentages	to	a	specific	number	of	decimal	places.	–	Utilizing	Memory	Functions:	The	calculator’s	memory	functions	help	store	and	recall	percentage	values	for	repeated	calculations.	–	Troubleshooting	Common	Errors:	This
function	helps	in	identifying	and	resolving	common	mistakes	or	errors	that	may	occur	during	percentage	calculations.	IEntering	Values	A.	Step-by-step	instructions	on	entering	the	original	number	To	begin	calculating	percentages	on	the	TI	84	Plus,	you	first	need	to	enter	the	original	number	into	the	calculator.	Follow	these	steps	to	enter	the	original
number:	1.	Turn	on	your	TI	84	Plus	calculator	by	pressing	the	“On”	button.	2.	Take	a	look	at	the	calculator’s	screen	and	locate	the	number	pad,	which	consists	of	digits	0-9	and	the	decimal	point.	3.	Use	the	number	pad	to	input	the	original	number.	For	example,	if	the	original	number	is	150,	press	the	keys	1,	5,	and	0	in	that	order.	4.	If	the	original
number	is	a	decimal,	use	the	decimal	point	button	to	input	the	appropriate	value.	For	example,	if	the	original	number	is	0.75,	press	the	keys	0,	.,	7,	and	5	in	that	order.	B.	Describing	how	to	input	the	percentage	value	After	entering	the	original	number,	you	will	need	to	input	the	percentage	value	for	your	calculation.	Follow	these	steps	to	input	the
percentage	value:	1.	Locate	the	multiplication	button	on	the	calculator,	denoted	by	“*”.	2.	Enter	the	percentage	value	using	the	number	pad.	For	example,	if	you	want	to	calculate	25%,	press	the	keys	2	and	5	in	that	order.	3.	If	the	percentage	value	is	less	than	1,	you	may	need	to	convert	it	to	a	decimal	before	inputting	it	into	the	calculator.	For
example,	to	calculate	0.5%,	input	the	keys	0,	.,	0,	and	5	in	that	order.	It	is	important	to	note	that	when	inputting	the	percentage	value,	you	do	not	need	to	include	the	percentage	symbol	(%).	The	calculator	automatically	recognizes	it	as	a	percentage.	After	entering	both	the	original	number	and	the	percentage	value,	you	are	ready	to	perform	various
percentage	calculations	on	the	TI	84	Plus	calculator.	Converting	Percentage	to	Decimal	A.	Explanation	of	why	converting	to	decimal	is	necessary	When	performing	calculations	involving	percentages	on	the	TI	84	Plus	calculator,	it	is	essential	to	convert	the	percentage	to	decimal	form.	This	conversion	allows	for	more	accurate	and	straightforward
calculations.	Percentages	are	typically	represented	as	fractions	out	of	100,	while	decimals	are	expressed	as	fractions	out	of	1.	Converting	percentages	to	decimals	simplifies	mathematical	operations	by	eliminating	the	need	to	work	with	fractions.	By	converting	to	decimals,	calculations	involving	percentages	can	be	performed	using	regular	arithmetic
operations	such	as	addition,	subtraction,	multiplication,	and	division.	B.	Instructions	on	how	to	convert	a	percentage	value	to	a	decimal	on	the	calculator	To	convert	a	percentage	to	a	decimal	on	the	TI	84	Plus	calculator,	follow	the	step-by-step	instructions	below:	1.	Start	by	inputting	the	percentage	value.	For	example,	if	you	have	45%,	enter	45.	2.
Divide	the	entered	percentage	value	by	100.	To	do	this,	press	the	“/”	button	on	the	calculator’s	keypad,	followed	by	“100”.	Press	the	“Enter”	key	to	perform	the	division.	3.	The	calculator	will	display	the	decimal	equivalent	of	the	percentage.	For	instance,	if	you	entered	45	and	divided	by	100,	the	calculator	will	show	0.45.	By	converting	percentages	to
decimals,	you	can	perform	various	calculations	more	easily.	Whether	you’re	calculating	tax,	discounts,	or	markup,	working	with	decimals	ensures	accurate	results	and	simplifies	the	overall	calculation	process.	By	mastering	the	conversion	between	percentages	and	decimals	on	the	TI	84	Plus	calculator,	you’ll	be	equipped	to	tackle	a	wide	range	of
percentage-based	problems	and	have	a	solid	foundation	for	further	mathematical	calculations.	Practice	using	this	conversion	technique	to	become	comfortable	with	the	calculator’s	functionality	and	enhance	your	problem-solving	abilities.	Calculating	the	Percentage	Amount	Calculating	the	percentage	of	a	number	is	a	common	task	that	can	be	easily
done	using	the	TI	84	Plus	calculator.	This	section	will	provide	a	step-by-step	guide	on	how	to	find	the	percentage	of	a	number	using	the	calculator’s	functions.	Step	1:	Enter	the	Original	Number	The	first	step	in	calculating	the	percentage	amount	is	to	enter	the	original	number	into	the	calculator.	This	can	be	done	by	simply	inputting	the	number	using
the	calculator’s	numeric	keypad.	For	example,	if	you	want	to	find	30%	of	200,	you	would	enter	200	into	the	calculator.	Step	2:	Input	the	Percentage	Value	After	entering	the	original	number,	the	next	step	is	to	input	the	percentage	value	that	you	want	to	calculate.	This	can	be	done	by	entering	the	percentage	directly	using	the	calculator’s	numeric
keypad.	It	is	important	to	note	that	percentages	should	always	be	entered	as	decimals.	For	example,	if	you	want	to	find	30%	of	200,	you	would	enter	0.3	into	the	calculator.	Step	3:	Use	the	Formula	Once	you	have	entered	both	the	original	number	and	the	percentage	value,	you	can	now	calculate	the	percentage	amount	using	the	formula	(original
number	*	percentage	value).	This	can	be	done	by	using	the	multiplication	button	(*)	on	the	calculator.	For	example,	if	you	want	to	find	30%	of	200,	you	would	multiply	200	by	0.3.	The	result,	in	this	case,	would	be	60.	After	performing	the	calculation,	the	calculator	will	display	the	percentage	amount	on	the	screen.	By	following	these	three	simple	steps,
you	can	easily	calculate	the	percentage	amount	of	any	number	using	the	TI	84	Plus	calculator.	Whether	you	are	working	on	math	problems,	financial	calculations,	or	any	other	situation	that	involves	percentages,	the	calculator	can	quickly	and	accurately	provide	the	answers	you	need.	Percentage	change	is	a	measure	of	the	difference	between	two
values	as	a	percentage	of	the	original	value.	It	is	commonly	used	in	various	fields,	including	finance,	economics,	and	statistics,	to	analyze	and	compare	data.	Being	able	to	calculate	percentage	change	on	the	TI	84	Plus	is	important	for	understanding	trends,	growth	rates,	and	changes	in	quantities	over	time.	B.	Instructions	on	How	to	Calculate
Percentage	Change	on	the	TI	84	Plus	To	calculate	the	percentage	change	on	the	TI	84	Plus,	follow	these	step-by-step	instructions:	Enter	the	original	value	into	the	calculator.	Store	the	original	value	in	a	variable	using	the	STO	key.	Enter	the	new	value	into	the	calculator.	Subtract	the	original	value	from	the	new	value.	Divide	the	difference	by	the
original	value.	Multiply	the	quotient	by	100	to	obtain	the	percentage	change.	For	example,	let’s	say	the	original	value	is	100	and	the	new	value	is	120.	Here’s	how	you	would	calculate	the	percentage	change:	Enter	100	into	the	calculator.	Press	the	STO	key	followed	by	a	variable	(e.g.,	ALPHA	+	A)	to	store	the	original	value.	Enter	120	into	the
calculator.	Subtract	the	stored	original	value	by	pressing	the	ALPHA	key	followed	by	the	variable	(e.g.,	ALPHA	+	A)	and	subtracting	it	from	the	new	value	using	the	(-)	key.	Divide	the	difference	by	the	stored	original	value	by	pressing	the	division	(/)	key.	Multiply	the	quotient	by	100	by	pressing	the	multiplication	(x)	key	followed	by	100.	The	resulting
value,	20,	represents	a	20%	increase	from	the	original	value.	By	following	these	instructions,	you	can	easily	calculate	the	percentage	change	between	any	two	values	using	the	TI	84	Plus	calculator.	Whether	you’re	analyzing	financial	data,	tracking	changes	in	quantities,	or	comparing	statistical	data,	the	ability	to	calculate	percentage	change
accurately	will	be	a	valuable	tool	in	your	calculations.	Calculating	Markup	and	Discount	A.	Explanation	of	markup	and	discount	In	this	section,	we	will	explore	the	concepts	of	markup	and	discount	and	how	to	calculate	them	using	percentages	on	the	TI	84	Plus	calculator.	Markup	refers	to	the	increase	in	price	of	a	product	or	service,	while	discount
refers	to	a	reduction	in	price.	Understanding	how	to	calculate	markup	and	discount	is	essential	in	various	fields	like	retail,	finance,	and	economics.	Markup	is	typically	expressed	as	a	percentage	over	cost,	indicating	the	additional	amount	added	to	the	cost	to	determine	the	selling	price.	On	the	other	hand,	discount	is	usually	expressed	as	a	percentage
reduced	from	the	original	price,	providing	customers	with	savings.	B.	Step-by-step	guide	on	calculating	markup	and	discount	using	percentages	on	the	TI	84	Plus	To	calculate	markup	on	the	TI	84	Plus:	1.	Enter	the	original	price	or	cost	into	the	calculator.	2.	Multiply	the	original	price	by	the	markup	percentage.	3.	Add	the	result	from	step	2	to	the
original	price	to	obtain	the	selling	price.	For	example,	if	the	original	price	of	an	item	is	$50	and	the	markup	percentage	is	30%,	the	calculation	would	be	as	follows:	($50)	+	($50	*	0.30)	=	$50	+	$15	=	$65	To	calculate	discount	on	the	TI	84	Plus:	1.	Enter	the	original	price	into	the	calculator.	2.	Multiply	the	original	price	by	the	discount	percentage.	3.
Subtract	the	result	from	step	2	from	the	original	price	to	obtain	the	discounted	price.	For	example,	if	the	original	price	of	an	item	is	$100	and	the	discount	percentage	is	25%,	the	calculation	would	be	as	follows:	($100)	–	($100	*	0.25)	=	$100	–	$25	=	$75	By	following	these	step-by-step	instructions,	you	can	easily	calculate	markup	and	discount	using
percentages	on	the	TI	84	Plus	calculator.	These	calculations	can	be	useful	in	real-life	scenarios	such	as	determining	the	selling	price	of	products,	calculating	savings	during	sales,	or	calculating	profit	margins.	Practice	using	these	calculations	to	gain	confidence	and	proficiency	in	applying	markup	and	discount	percentages.	VISolving	Percent	Problems
A.	Understanding	the	Different	Types	of	Percent	Problems	Percent	problems	come	in	various	forms,	and	it	is	essential	to	recognize	the	different	types	in	order	to	solve	them	efficiently	using	the	TI	84	Plus	calculator.	Common	types	of	percent	problems	include	finding	the	percent	of	a	number,	finding	the	original	number	if	a	percent	increase	or
decrease	is	given,	and	finding	the	percent	increase	or	decrease	between	two	numbers.	To	illustrate,	let’s	consider	an	example	of	each	type:	1.	Finding	the	Percent	of	a	Number:	If	you	want	to	find	30%	of	150,	you	need	to	calculate	what	percent	30	is	of	150.	2.	Finding	the	Original	Number:	If	you	know	that	a	number	increased	by	25%	to	become	125,
you	can	use	the	calculator	to	find	the	original	number.	3.	Finding	the	Percent	Increase	or	Decrease:	If	a	product’s	price	increased	from	$50	to	$60,	you	can	determine	the	percentage	increase	using	the	TI	84	Plus.	B.	Utilizing	the	Calculator	to	Solve	Percent	Problems	Using	the	TI	84	Plus	calculator,	solving	percent	problems	becomes	much	simpler	and
quicker.	The	calculator	allows	you	to	input	the	required	values	and	perform	the	necessary	calculations	in	a	few	steps.	1.	Finding	the	Percent	of	a	Number:	To	find	the	percent	of	a	number,	follow	the	steps	mentioned	in	Section	Enter	the	original	number	and	multiply	it	by	the	percentage	value	you	want	to	find.	2.	Finding	the	Original	Number:	To	find
the	original	number	when	a	percent	increase	or	decrease	is	given,	follow	the	steps	mentioned	in	Section	Divide	the	given	number	by	1	plus	the	percentage	increase	or	decrease.	3.	Finding	the	Percent	Increase	or	Decrease:	To	find	the	percent	increase	or	decrease	between	two	numbers,	follow	the	steps	mentioned	in	Section	Subtract	the	original
number	from	the	final	number,	divide	that	difference	by	the	original	number,	and	multiply	by	100.	By	following	these	steps	and	using	the	appropriate	functions	on	the	TI	84	Plus	calculator,	you	can	efficiently	solve	a	wide	range	of	percent	problems.	In	conclusion,	the	TI	84	Plus	calculator	offers	a	reliable	and	efficient	tool	for	solving	percent	problems.
By	understanding	the	different	types	of	percent	problems	and	utilizing	the	calculator’s	functions	and	features	outlined	in	this	guide,	you	will	be	able	to	tackle	various	percent	calculations	with	ease.	Remember	to	practice	and	familiarize	yourself	with	the	calculator	to	master	percent	calculations	effectively.	Using	Parentheses	A.	Explaining	the
importance	of	parentheses	in	percent	calculations	When	performing	complex	calculations	involving	percentages	on	the	TI	84	Plus	calculator,	it	is	crucial	to	understand	the	significance	of	using	parentheses.	Parentheses	are	used	to	indicate	the	order	in	which	calculations	should	be	performed	and	to	ensure	accurate	results.	In	percent	calculations,
parentheses	allow	you	to	separate	different	components	of	the	equation	and	prevent	ambiguity.	This	becomes	particularly	important	when	dealing	with	multiple	operations	or	when	calculating	percentage	change	or	percent	problems.	For	instance,	consider	the	calculation	(20	+	5)	*	10%.	Without	using	parentheses,	the	calculator	would	first	multiply	5
by	10%	and	then	add	the	result	to	20,	which	would	yield	an	incorrect	answer.	However,	by	enclosing	20	+	5	within	parentheses,	the	calculator	knows	to	add	the	numbers	first	and	then	calculate	10%	of	the	sum.	Using	parentheses	clarifies	the	intended	order	of	operations	and	ensures	that	the	calculator	correctly	interprets	the	equation.	B.	Providing
instructions	on	how	to	use	parentheses	on	the	TI	84	Plus	To	utilize	parentheses	on	the	TI	84	Plus	calculator,	follow	these	step-by-step	instructions:	1.	Begin	by	entering	the	equation	or	calculation	you	wish	to	perform,	including	the	parentheses	where	appropriate.	2.	To	open	a	parenthesis,	press	the	“(”	key	located	near	the	bottom-left	corner	of	the
calculator.	3.	After	entering	the	desired	calculation	within	the	parentheses,	press	the	“)”	key	located	next	to	the	“(”	key	to	close	the	parenthesis.	4.	Repeat	this	process	for	any	additional	sets	of	parentheses	needed	in	your	calculation.	5.	Once	the	entire	equation,	including	parentheses,	is	entered,	press	the	“=”	key	to	obtain	the	result.	It’s	important	to
note	that	the	TI	84	Plus	calculator	allows	for	nested	parentheses,	where	sets	of	parentheses	can	be	enclosed	within	other	sets.	This	feature	is	especially	useful	when	dealing	with	complex	calculations	involving	multiple	operations.	By	employing	parentheses	correctly,	you	can	significantly	enhance	the	accuracy	and	precision	of	percentage	calculations
on	the	TI	84	Plus	calculator.	With	practice	and	familiarity,	you	will	become	proficient	in	using	parentheses	to	tackle	even	the	most	intricate	percentage	calculations.	X.	Display	Options	A.	Overview	of	different	display	options	available	on	the	calculator	The	TI	84	Plus	calculator	offers	several	display	options	that	can	be	utilized	to	enhance	the	user
experience	when	calculating	percentages.	These	display	options	include	different	modes,	formats,	and	settings	that	can	be	adjusted	based	on	personal	preferences.	One	important	display	option	is	the	mode	selection.	The	calculator	has	two	main	modes:	the	standard	mode	and	the	scientific	mode.	The	standard	mode	displays	numbers	in	the	decimal
format,	while	the	scientific	mode	uses	scientific	notation.	Users	can	switch	between	these	modes	depending	on	the	level	of	precision	required	for	their	calculations.	Additionally,	the	calculator	provides	different	formats	for	displaying	decimals	and	fractions.	The	default	format	is	the	Auto	setting,	which	automatically	chooses	the	best	format	based	on
the	calculated	number.	However,	users	can	also	choose	to	display	decimals	as	eTher	fixed	decimal	places	or	as	a	fraction.	B.	Explaining	how	to	change	the	display	format	for	percentage	calculations	To	change	the	display	format	for	percentage	calculations	on	the	TI	84	Plus,	follow	these	steps:	1.	Press	the	[MODE]	button	on	the	calculator.	2.	Use	the
arrow	keys	to	highlight	the	desired	mode	(Standard	or	Scientific)	and	press	[ENTER]	to	select	it.	To	change	the	display	format	for	decimals	or	fractions,	follow	these	steps:	1.	Press	the	[MODE]	button.	2.	Use	the	arrow	keys	to	highlight	“Float,”	“Frac,”	or	“Auto”	and	press	[ENTER]	to	select	the	desired	format.	If	“Float”	is	selected,	decimals	will	be
displayed	in	the	decimal	format.	If	“Frac”	is	selected,	decimals	will	be	displayed	as	fractions.	If	“Auto”	is	selected,	the	calculator	will	automatically	choose	the	best	format	based	on	the	calculated	number.	It	is	important	to	note	that	changing	the	display	format	does	not	affect	the	actual	calculation	performed	by	the	calculator.	It	only	changes	how	the
result	is	displayed	on	the	screen.	By	utilizing	the	display	options	available	on	the	TI	84	Plus	calculator,	users	can	customize	the	appearance	of	their	calculations	to	suit	their	needs	and	preferences.	Whether	it’s	selecting	a	specific	mode	for	precision	or	choosing	a	display	format	for	decimal	or	fractional	values,	understanding	and	utilizing	these	display
options	can	greatly	enhance	the	accuracy	and	efficiency	of	percentage	calculations	on	the	TI	84	Plus.	Rounding	and	Approximating	Importance	of	rounding	and	approximating	in	percentage	calculations	Rounding	and	approximating	play	crucial	roles	in	percentage	calculations	as	they	allow	for	simplified	and	more	manageable	results.	While	it	is
important	to	maintain	accuracy	in	mathematical	calculations,	rounding	and	approximating	percentages	can	help	in	practical	scenarios	where	precise	decimal	values	are	not	necessary	or	may	be	too	cumbersome	to	work	with.	When	dealing	with	real-world	data	or	when	presenting	percentages	in	a	more	simplified	manner,	rounding	and	approximating
can	provide	more	meaningful	and	understandable	results.	For	example,	if	you	are	calculating	a	percentage	to	determine	a	discount	during	a	sale,	it	may	be	more	practical	to	round	to	the	nearest	whole	number	rather	than	working	with	several	decimal	places.	Instructions	on	how	to	round	or	approximate	percentages	on	the	TI	84	Plus	The	TI	84	Plus
calculator	provides	convenient	functions	for	rounding	and	approximating	percentages,	making	it	easy	to	obtain	simpler	and	more	practical	values.	To	round	or	approximate	a	percentage	on	the	TI	84	Plus,	follow	these	steps:	1.	Start	by	calculating	the	percentage	using	the	methods	described	in	the	previous	sections.	2.	Once	you	have	the	calculated
percentage	value	displayed	on	the	screen,	determine	the	desired	level	of	rounding	or	approximation.	3.	To	round	the	percentage,	use	the	“round”	function	on	the	calculator.	Press	the	“math”	button,	scroll	down	to	find	the	“round(”	function,	and	enter	the	percentage	value	within	the	parenthesis.	Press	“enter”	to	calculate	and	display	the	rounded
value.	4.	To	approximate	the	percentage,	you	can	choose	to	round	it	to	a	specific	number	of	decimal	places.	For	example,	to	approximate	to	one	decimal	place,	use	the	“round(”	function	but	add	the	desired	number	of	decimal	places	inside	the	parenthesis.	For	instance,	entering	“round(percentage,	1)”	will	round	the	percentage	to	one	decimal	place.
By	following	these	steps,	you	can	easily	round	or	approximate	percentages	to	your	desired	level	of	precision	using	the	TI	84	Plus	calculator.	Remember	to	adjust	the	level	of	rounding	or	approximation	based	on	the	specific	needs	of	your	calculations	or	the	context	in	which	you	are	presenting	the	percentages.	In	conclusion,	rounding	and	approximating
provide	a	practical	way	to	simplify	and	present	percentages	in	a	more	understandable	format.	The	TI	84	Plus	calculator	offers	convenient	functions	to	perform	rounding	and	approximation,	allowing	for	easier	manipulation	of	percentage	values	and	more	straightforward	calculations.	By	mastering	these	techniques,	you	can	confidently	work	with
percentages	and	utilize	them	effectively	in	various	real-life	scenarios.	Utilizing	Memory	Functions	A.	Explanation	of	memory	functions	on	the	TI	84	Plus	In	this	section,	we	will	explore	the	memory	functions	of	the	TI	84	Plus	calculator	and	how	they	can	be	used	to	enhance	percentage	calculations.	The	TI	84	Plus	has	various	storage	registers	that	allow
the	user	to	store	values	for	later	use,	making	it	easier	to	perform	repeated	calculations	without	re-entering	the	same	values.	The	calculator	has	a	total	of	26	memory	registers,	labeled	A	through	Z,	providing	ample	storage	space	for	percentage	values	and	intermediate	results.	These	registers	can	store	both	numbers	and	expressions,	allowing	you	to
save	calculations	for	later	use.	B.	Demonstrating	how	to	use	memory	functions	for	storing	and	recalling	percentage	values	To	store	a	percentage	value	in	one	of	the	memory	registers,	follow	these	steps:	1.	After	calculating	a	percentage	or	obtaining	a	result,	press	the	“STO→”	button	followed	by	the	desired	letter	(e.g.,	“STO→A”)	to	store	the	value	in
register	A.	2.	The	stored	value	will	now	be	saved	in	memory	and	can	be	recalled	at	any	time	by	pressing	the	“RCL”	button	followed	by	the	corresponding	letter	(e.g.,	“RCL	A”).	3.	You	can	use	the	recalled	value	in	further	calculations	or	manipulate	it	using	other	functions.	One	advantage	of	using	memory	functions	is	that	you	can	perform	calculations
involving	multiple	percentage	values.	For	example,	if	you	need	to	find	the	average	of	two	percentages,	you	can	store	them	in	different	registers	and	recall	them	as	needed.	Additionally,	memory	functions	can	be	extremely	useful	when	solving	complex	percent	problems	or	equations	that	require	the	use	of	multiple	percentages.	By	storing	intermediate
results	in	memory	registers,	you	can	easily	access	them	at	any	point	during	the	calculation	process.	Remember	to	clear	any	unwanted	values	from	memory	by	pressing	the	“CLEAR”	button	followed	by	the	desired	letter	(e.g.,	“CLEAR	A”)	to	ensure	accurate	results	in	future	calculations.	Using	memory	functions	can	save	time	and	effort,	especially	when
dealing	with	repetitive	calculations.	It	allows	you	to	focus	on	the	problem	at	hand	without	worrying	about	retyping	values	or	losing	previously	obtained	results.	To	become	proficient	in	using	memory	functions,	practice	by	storing	different	percentage	values	and	recalling	them	for	various	calculations.	This	will	help	you	familiarize	yourself	with	the
process	and	increase	your	efficiency	when	working	with	percentages	on	the	TI	84	Plus	calculator.	Conclusion	Recap	of	the	step-by-step	guide	for	calculating	percentages	on	the	TI	84	Plus	In	this	comprehensive	guide,	we	have	provided	a	step-by-step	approach	to	calculating	percentages	on	the	TI	84	Plus	calculator.	Let’s	recap	the	key	points	covered
in	the	previous	sections:	First,	we	started	with	an	overview	of	the	TI	84	Plus	calculator	and	emphasized	the	importance	of	knowing	how	to	calculate	percentages	on	this	device.	Next,	we	discussed	the	basic	features	and	functions	of	the	calculator,	including	its	layout	and	the	main	functions	used	for	percentage	calculations.	We	then	moved	on	to
entering	values,	providing	detailed	instructions	on	inputting	the	original	number	and	the	percentage	value.	Converting	the	percentage	to	a	decimal	was	the	focus	of	the	next	section.	We	explained	why	converting	to	decimal	is	necessary	and	provided	instructions	on	how	to	do	it	on	the	calculator.	Afterwards,	we	showed	you	how	to	calculate	the
percentage	amount	using	the	formula	(original	number	*	percentage	value),	providing	a	step-by-step	guide	to	simplify	the	process.	In	the	following	section,	we	tackled	the	concept	of	percentage	change	and	demonstrated	how	to	calculate	it	on	the	TI	84	Plus.	Moving	forward,	we	discussed	the	calculation	of	markup	and	discount	using	percentages	on
the	calculator,	providing	a	step-by-step	guide	for	each.	We	then	explored	different	types	of	percent	problems	and	how	to	solve	them	using	the	calculator.	To	ensure	accurate	calculations,	we	emphasized	the	importance	of	using	parentheses	and	provided	instructions	on	how	to	incorporate	them	into	your	percentage	calculations	on	the	TI	84	Plus.	Next,
we	discussed	the	display	options	available	on	the	calculator	and	how	to	change	the	format	for	percentage	calculations.	We	also	highlighted	the	significance	of	rounding	and	approximating	in	percentage	calculations	and	explained	how	to	do	it	on	the	TI	84	Plus.	Utilizing	memory	functions	on	the	TI	84	Plus	was	the	focus	of	the	next	section.	We
explained	what	they	are	and	demonstrated	how	to	use	them	for	storing	and	recalling	percentage	values.	Additionally,	we	addressed	common	mistakes	and	errors	that	may	occur	when	calculating	percentages.	We	provided	solutions	to	overcome	these	errors	specifically	on	the	TI	84	Plus	calculator.	In	conclusion,	mastering	percentage	calculations	on
the	TI	84	Plus	can	be	a	valuable	skill,	particularly	when	working	with	data	representation	or	solving	real-world	problems.	By	following	the	step-by-step	guide	outlined	in	this	article,	students,	professionals,	and	anyone	else	using	the	TI	84	Plus	can	become	confident	in	performing	accurate	percentage	calculations.	Practice	is	key,	so	we	encourage	you
to	utilize	the	calculator’s	features	and	functions	regularly	to	improve	your	proficiency.	You	can	control	your	preferences	for	how	we	use	cookies	to	collect	and	use	information	while	you're	on	TI	websites	by	adjusting	the	status	of	these	categories.	Category	Description	Allow	Analytics	and	performance	cookies	These	cookies,	including	cookies	from
Google	Analytics,	allow	us	to	recognize	and	count	the	number	of	visitors	on	TI	sites	and	see	how	visitors	navigate	our	sites.	This	helps	us	improve	the	way	TI	sites	work	(for	example,	by	making	it	easier	for	you	to	find	information	on	the	site).	Advertising	and	marketing	cookies	These	cookies	enable	interest-based	advertising	on	TI	sites	and	third-party
websites	using	information	you	make	available	to	us	when	you	interact	with	our	sites.	Interest-based	ads	are	displayed	to	you	based	on	cookies	linked	to	your	online	activities,	such	as	viewing	products	on	our	sites.	We	may	also	share	this	information	with	third	parties	for	these	purposes.	These	cookies	help	us	tailor	advertisements	to	better	match
your	interests,	manage	the	frequency	with	which	you	see	an	advertisement,	and	understand	the	effectiveness	of	our	advertising.	Functional	cookies	These	cookies	help	identify	who	you	are	and	store	your	activity	and	account	information	in	order	to	deliver	enhanced	functionality,	including	a	more	personalized	and	relevant	experience	on	our	sites.	If
you	do	not	allow	these	cookies,	some	or	all	site	features	and	services	may	not	function	properly.	If	you	do	not	allow	these	cookies,	some	or	all	of	the	site	features	and	services	may	not	function	properly.	Social	media	cookies	These	cookies	allow	identification	of	users	and	content	connected	to	online	social	media,	such	as	Facebook,	Twitter	and	other
social	media	platforms,	and	help	TI	improve	its	social	media	outreach.	Strictly	necessary	These	cookies	are	necessary	for	the	operation	of	TI	sites	or	to	fulfill	your	requests	(for	example,	to	track	what	items	you	have	placed	into	your	cart	on	the	TI.com,	to	access	secure	areas	of	the	TI	site,	or	to	manage	your	configured	cookie	preferences).	Always	On
When	you	see	this	sign:	+	plus	add	plus	add	++++++++	,	but	not	when	you	see	:	A+,	B+,	C+,	D+.	That	is	your	grade.	By:	super	answerer	The	%	Command	The	%	symbol	is	an	undocumented	command	on	the	TI-83	series	calculators	starting	with	OS	version	1.15.	It's	useful	as	a	shortcut	for	percents	-	it	divides	by	100,	so	it	will	convert	numbers	to
percentages.	For	example,	50%	will	become	50/100	or	1/2,	which	is	just	what	50%	should	be.	Although	this	trick	can	save	you	a	few	bytes,	it	also	makes	your	program	incompatible	with	old	OS	versions	—	it's	up	to	you	to	decide	if	the	tradeoff	is	worth	it.	The	%	symbol	is	not	quite	equivalent	to	the	value	0.01:	typing	in	%	by	itself	will	give	you	a	syntax
error,	as	expected.	Entering	the	%	symbol	There	are	several	assembly	programs	out	there	that	can	let	you	access	the	%	symbol	if	you	know	what	you're	doing,	but	here	is	a	short,	self-contained	way.	First,	create	an	assembly	program	by	entering	the	following	into	the	program	editor:	:AsmPrgmEFF1423605C9	:BBDA	Then	compile	it:	for	example,	if
you	entered	the	above	into	prgmX,	and	prgmY	is	free,	then	you	can	run	Then	run	the	compiled	assembly	program:	Now	the	compiled	assembly	program	will	become	unlocked	and	contain	the	characters:	Most	of	this	is	garbage	data	and	can	be	deleted,	and	the	final	character	is	the	%	character	we	wanted.	(If	you	delete	the	other	characters,	then	the	%
symbol	can	be	accessed	at	any	time	by	pressing	[2nd][RCL]	and	choosing	prgmY.)	Error	Conditions	ERR:INVALID	is	thrown	on	older	operating	system	versions.	commandoperatorspercenttokensundocumented	Page	2	TI-83	Plus	Large	Font	This	fixed-width	character	set	is	generally	found	on	the	home	screen.	For	the	smaller	font,	please	see	this
article.	Character	Map	The	order	of	the	characters	is	rows	then	columns,	so	that	is	01	Click	on	any	character	to	jump	ahead	and	view	its	respective	details.	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	The	following	chart	depicts	each	character	with	its	hexadecimal	equivalent,	name,	and	possible	BBCode	representation	(the	latter	of
which	need	only	be	copied	and	pasted	directly	into	a	message	board	post).	Most	likely,	any	numeric	character	references	(e.g.,	►)	included	will	be	automatically	converted	upon	previewing	or	sending	the	message.	While	there	are	more	accurate	Unicode-based	substitutes	for	many	of	these	characters,	a	rather	large	user	base	lacks	the	fonts	or	settings
necessary	to	render	them	in	a	visually	useful	manner,	or	at	all.	Consequently,	precision	as	there	might	have	been	in	more	well-suited	environments	has	been	sacrificed	to	permit	a	higher	rate	of	good	cross-browser	performance.	For	instances	where	a	sufficient	alternative	does	not	exist,	image	tags	with	the	appropriate	URI	will	be	provided.	If	you	wish
to	use	only	7-bit	ASCII,	then	refer	to	the	article	on	ASCII	Output	Codes.	Determining	Font	Sizes	There	is	no	set	standard	for	BBCode	font	sizes.	Message	board	vendors	will	use	their	own	rules	of	determination,	so	using	the	same	value	for	each	will	produce	dissimilar	results.	Luckily,	the	representations	on	this	page	will	only	utilize	one	such
transformation,	thus	lending	themselves	to	the	simplified	requirement	of	a	single	lookup:	Whenever	you	see	"[size=x]",	the	"x"	should	be	replaced	by…	0	if	using	IPB	2.1.7,	MyBB,	or	vBulletin	10	if	using	phpBB	6pt	if	using	SMF	These	are	based	on	the	default	skins	for	the	above	vendors.	Unsupported	Tags	If	you	find	that	a	specific	message	board
doesn't	support	one	or	more	of	the	tags	provided,	then	you	should	use	the	more	accommodating	ASCII	Output	Codes	instead.	Individual	Characters	Hex:	01	Name:	"Recursive	n"	BBCode:	[font=courier	new][i]n[/i][/font]	Hex:	02	Name:	"Recursive	u"	BBCode:	u	Hex:	03	Name:	"Recursive	v"	BBCode:	v	Hex:	04	Name:	"Recursive	w"	BBCode:	w	Hex:	05
Name:	"Convert"	BBCode:	[font=courier	new]►[/font]	Hex:	06	Name:	"Square	Up"	BBCode:	[img]	/img]	Hex:	07	Name:	"Square	Down"	BBCode:	[img]	/img]	Hex:	08	Name:	"Integral"	BBCode:	[font=courier	new]∫[/font]	Hex:	09	Name:	"Cross"	BBCode:	[font=verdana]×[/font]	Hex:	0A	Name:	"Box	Icon"	BBCode:	[font=courier	new]▫[/font]	Hex:	0B
Name:	"Cross	Icon"	BBCode:	[font=arial][size=x]+[/size][/font]	(?)	Hex:	0C	Name:	"Dot	Icon"	BBCode:	[font=courier	new]·[/font]	Hex:	0D	Name:	"Subscript	T"	BBCode:	[font=verdana][size=x]т[/size][/font]	(?)	Hex:	0E	Name:	"Cube	Root"	BBCode:	[font=verdana]³[/font]	Hex:	0F	Name:	"Hexadecimal	F"	BBCode:	[font=verdana][b]F[/b][/font]	Hex:	10
Name:	"Root"	BBCode:	[font=arial]√[/font]	Hex:	11	Name:	"Inverse"	BBCode:	[font=courier	new]‾¹[/font]	Hex:	12	Name:	"Square"	BBCode:	[font=verdana]²[/font]	Hex:	13	Name:	"Angle"	BBCode:	[img]	/img]	Hex:	14	Name:	"Degree"	BBCode:	[font=times	new	roman]°[/font]	Hex:	15	Name:	"Radian"	BBCode:	[font=verdana][sup]r[/sup][/font]	Hex:	16
Name:	"Transpose"	BBCode:	[font=arial][sup]т[/sup][/font]	Hex:	17	Name:	"Less	Than	or	Equal	To"	BBCode:	[font=verdana]≤[/font]	Hex:	18	Name:	"Not	Equal	To"	BBCode:	[font=verdana]≠[/font]	Hex:	19	Name:	"Greater	Than	or	Equal	To"	BBCode:	[font=verdana]≥[/font]	Hex:	1A	Name:	"Negation"	BBCode:	[font=courier	new]‾[/font]	Hex:	1B	Name:
"Exponent"	BBCode:	[font=verdana][size=x]E[/size][/font]	(?)	Hex:	1C	Name:	"Store"	BBCode:	[font=courier	new]→[/font]	Hex:	1D	Name:	"Ten"	BBCode:	[font=courier	new][size=x]10[/size][/font]	(?)	Hex:	1E	Name:	"Up	Arrow"	BBCode:	[font=times	new	roman]↑[/font]	Hex:	1F	Name:	"Down	Arrow"	BBCode:	[font=times	new	roman]↓[/font]	Hex:	20
Name:	"Space"	BBCode:	[font=courier	new]░[/font]	Hex:	21	Name:	"Exclamation	Mark"	BBCode:	!	Hex:	22	Name:	"Quotation	Mark"	BBCode:	[font=verdana]"[/font]	Hex:	23	Name:	"Pound	Sign"	BBCode:	#	Hex:	24	Name:	"Fourth"	BBCode:	[font=verdana][sup]4[/sup][/font]	Hex:	25	Name:	"Percent	Sign"	BBCode:	%	Hex:	26	Name:	"Ampersand"
BBCode:	[font=arial]&[/font]	Hex:	27	Name:	"Apostrophe"	BBCode:	'	Hex:	28	Name:	"Left	Parenthesis"	BBCode:	(Hex:	29	Name:	"Right	Parenthesis"	BBCode:)	Hex:	2A	Name:	"Asterisk"	BBCode:	[font=verdana]*[/font]	Hex:	2B	Name:	"Plus	Sign"	BBCode:	+	Hex:	2C	Name:	"Comma"	BBCode:	[font=times	new	roman],[/font]	Hex:	2D	Name:	"Dash"
BBCode:	−	Hex:	2E	Name:	"Period"	BBCode:	.	Hex:	2F	Name:	"Slash"	BBCode:	/	Hex:	30	Name:	"0"	BBCode:	0	Hex:	31	Name:	"1"	BBCode:	1	Hex:	32	Name:	"2"	BBCode:	2	Hex:	33	Name:	"3"	BBCode:	3	Hex:	34	Name:	"4"	BBCode:	4	Hex:	35	Name:	"5"	BBCode:	5	Hex:	36	Name:	"6"	BBCode:	6	Hex:	37	Name:	"7"	BBCode:	7	Hex:	38	Name:	"8"	BBCode:
8	Hex:	39	Name:	"9"	BBCode:	9	Hex:	3A	Name:	"Colon"	BBCode:	:	Hex:	3B	Name:	"Semicolon"	BBCode:	[font=times	new	romain];[/font]	Hex:	3C	Name:	"Less	Than"	BBCode:	<	Hex:	3D	Name:	"Equal	To"	BBCode:	=	Hex:	3E	Name:	"Greater	Than"	BBCode:	>	Hex:	3F	Name:	"Question	Mark"	BBCode:	?	Hex:	40	Name:	"At	Sign"	BBCode:	[font=courier
new]@[/font]	Hex:	41	Name:	"Capital	A"	BBCode:	A	Hex:	42	Name:	"Capital	B"	BBCode:	B	Hex:	43	Name:	"Capital	C"	BBCode:	C	Hex:	44	Name:	"Capital	D"	BBCode:	D	Hex:	45	Name:	"Capital	E"	BBCode:	E	Hex:	46	Name:	"Capital	F"	BBCode:	F	Hex:	47	Name:	"Capital	G"	BBCode:	G	Hex:	48	Name:	"Capital	H"	BBCode:	H	Hex:	49	Name:	"Capital	I"
BBCode:	I	Hex:	4A	Name:	"Capital	J"	BBCode:	J	Hex:	4B	Name:	"Capital	K"	BBCode:	K	Hex:	4C	Name:	"Capital	L"	BBCode:	L	Hex:	4D	Name:	"Capital	M"	BBCode:	M	Hex:	4E	Name:	"Capital	N"	BBCode:	N	Hex:	4F	Name:	"Capital	O"	BBCode:	O	Hex:	50	Name:	"Capital	P"	BBCode:	P	Hex:	51	Name:	"Capital	Q"	BBCode:	Q	Hex:	52	Name:	"Capital	R"
BBCode:	R	Hex:	53	Name:	"Capital	S"	BBCode:	S	Hex:	54	Name:	"Capital	T"	BBCode:	T	Hex:	55	Name:	"Capital	U"	BBCode:	U	Hex:	56	Name:	"Capital	V"	BBCode:	V	Hex:	57	Name:	"Capital	W"	BBCode:	W	Hex:	58	Name:	"Capital	X"	BBCode:	X	Hex:	59	Name:	"Capital	Y"	BBCode:	Y	Hex:	5A	Name:	"Capital	Z"	BBCode:	Z	Hex:	5B	Name:	"Theta"
BBCode:	[font=arial][i]θ[/i][/font]	Hex:	5C	Name:	"Backslash"	BBCode:	\	Hex:	5D	Name:	"Right	Bracket"	BBCode:]	Hex:	5E	Name:	"Caret"	BBCode:	^	Hex:	5F	Name:	"Underscore"	BBCode:	_	Hex:	60	Name:	"Backquote"	BBCode:	[font=verdana]‘[/font]	Hex:	61	Name:	"Small	A"	BBCode:	a	Hex:	62	Name:	"Small	B"	BBCode:	b	Hex:	63	Name:	"Small	C"
BBCode:	c	Hex:	64	Name:	"Small	D"	BBCode:	d	Hex:	65	Name:	"Small	E"	BBCode:	e	Hex:	66	Name:	"Small	F"	BBCode:	f	Hex:	67	Name:	"Small	G"	BBCode:	g	Hex:	68	Name:	"Small	H"	BBCode:	h	Hex:	69	Name:	"Small	I"	BBCode:	i	Hex:	6A	Name:	"Small	J"	BBCode:	j	Hex:	6B	Name:	"Small	K"	BBCode:	k	Hex:	6C	Name:	"Small	L"	BBCode:	l	Hex:	6D
Name:	"Small	M"	BBCode:	m	Hex:	6E	Name:	"Small	N"	BBCode:	n	Hex:	6F	Name:	"Small	O"	BBCode:	o	Hex:	70	Name:	"Small	P"	BBCode:	p	Hex:	71	Name:	"Small	Q"	BBCode:	q	Hex:	72	Name:	"Small	R"	BBCode:	r	Hex:	73	Name:	"Small	S"	BBCode:	s	Hex:	74	Name:	"Small	T"	BBCode:	t	Hex:	75	Name:	"Small	U"	BBCode:	u	Hex:	76	Name:	"Small	V"
BBCode:	v	Hex:	77	Name:	"Small	W"	BBCode:	w	Hex:	78	Name:	"Small	X"	BBCode:	x	Hex:	79	Name:	"Small	Y"	BBCode:	y	Hex:	7A	Name:	"Small	Z"	BBCode:	z	Hex:	7B	Name:	"Left	Brace"	BBCode:	{	Hex:	7C	Name:	"Vertical	Bar"	BBCode:	|	Hex:	7D	Name:	"Right	Brace"	BBCode:	}	Hex:	7E	Name:	"Tilde"	BBCode:	[font=arial]~[/font]	Hex:	7F	Name:
"Inverse	Equal	To"	BBCode:	[img]	/img]	Hex:	80	Name:	"Subscript	0"	BBCode:	[font=courier	new][size=x]0[/size][/font]	(?)	Hex:	81	Name:	"Subscript	1"	BBCode:	[font=courier	new][size=x]1[/size][/font]	Hex:	82	Name:	"Subscript	2"	BBCode:	[font=courier	new][size=x]2[/size][/font]	Hex:	83	Name:	"Subscript	3"	BBCode:	[font=courier	new]
[size=x]3[/size][/font]	Hex:	84	Name:	"Subscript	4"	BBCode:	[font=courier	new][size=x]4[/size][/font]	Hex:	85	Name:	"Subscript	5"	BBCode:	[font=courier	new][size=x]5[/size][/font]	Hex:	86	Name:	"Subscript	6"	BBCode:	[font=courier	new][size=x]6[/size][/font]	Hex:	87	Name:	"Subscript	7"	BBCode:	[font=courier	new][size=x]7[/size][/font]	Hex:	88
Name:	"Subscript	8"	BBCode:	[font=courier	new][size=x]8[/size][/font]	Hex:	89	Name:	"Subscript	9"	BBCode:	[font=courier	new][size=x]9[/size][/font]	Hex:	8A	Name:	"Capital	A	Acute"	BBCode:	Á	Hex:	8B	Name:	"Capital	A	Grave"	BBCode:	À	Hex:	8C	Name:	"Capital	A	Caret"	BBCode:	Â	Hex:	8D	Name:	"Capital	A	Diaeresis"	BBCode:	Ä	Hex:	8E	Name:
"Small	A	Acute"	BBCode:	á	Hex:	8F	Name:	"Small	A	Grave"	BBCode:	à	Hex:	90	Name:	"Small	A	Caret"	BBCode:	â	Hex:	91	Name:	"Small	A	Diaeresis"	BBCode:	ä	Hex:	92	Name:	"Capital	E	Acute"	BBCode:	É	Hex:	93	Name:	"Capital	E	Grave"	BBCode:	È	Hex:	94	Name:	"Capital	E	Caret"	BBCode:	Ê	Hex:	95	Name:	"Capital	E	Diaeresis"	BBCode:	Ë	Hex:	96
Name:	"Small	E	Acute"	BBCode:	é	Hex:	97	Name:	"Small	E	Grave"	BBCode:	è	Hex:	98	Name:	"Small	E	Caret"	BBCode:	ê	Hex:	99	Name:	"Small	E	Diaeresis"	BBCode:	ë	Hex:	9A	Name:	"Capital	I	Acute"	BBCode:	Í	Hex:	9B	Name:	"Capital	I	Grave"	BBCode:	Ì	Hex:	9C	Name:	"Capital	I	Caret"	BBCode:	Î	Hex:	9D	Name:	"Capital	I	Diaeresis"	BBCode:	Ï	Hex:
9E	Name:	"Small	I	Acute"	BBCode:	í	Hex:	9F	Name:	"Small	I	Grave"	BBCode:	ì	Hex:	A0	Name:	"Small	I	Caret"	BBCode:	î	Hex:	A1	Name:	"Small	I	Diaeresis"	BBCode:	ï	Hex:	A2	Name:	"Capital	O	Acute"	BBCode:	Ó	Hex:	A3	Name:	"Capital	O	Grave"	BBCode:	Ò	Hex:	A4	Name:	"Capital	O	Caret"	BBCode:	Ô	Hex:	A5	Name:	"Capital	O	Diaeresis"	BBCode:	Ö
Hex:	A6	Name:	"Small	O	Acute"	BBCode:	ó	Hex:	A7	Name:	"Small	O	Grave"	BBCode:	ò	Hex:	A8	Name:	"Small	O	Caret"	BBCode:	ô	Hex:	A9	Name:	"Small	O	Diaeresis"	BBCode:	ö	Hex:	AA	Name:	"Capital	U	Acute"	BBCode:	Ú	Hex:	AB	Name:	"Capital	U	Grave"	BBCode:	Ù	Hex:	AC	Name:	"Capital	U	Caret"	BBCode:	Û	Hex:	AD	Name:	"Capital	U	Diaeresis"
BBCode:	Ü	Hex:	AE	Name:	"Small	U	Acute"	BBCode:	ú	Hex:	AF	Name:	"Small	U	Grave"	BBCode:	ù	Hex:	B0	Name:	"Small	U	Caret"	BBCode:	û	Hex:	B1	Name:	"Small	U	Diaeresis"	BBCode:	ü	Hex:	B2	Name:	"Capital	C	Cedilla"	BBCode:	Ç	Hex:	B3	Name:	"Small	C	Cedilla"	BBCode:	ç	Hex:	B4	Name:	"Capital	N	Tilde"	BBCode:	Ñ	Hex:	B5	Name:	"Small	N
Tilde"	BBCode:	ñ	Hex:	B6	Name:	"Accent"	BBCode:	[font=courier	new]´[/font]	Hex:	B7	Name:	"Grave"	BBCode:	[font=courier	new]`[/font]	Hex:	B8	Name:	"Diaeresis"	BBCode:	[font=courier	new]¨[/font]	Hex:	B9	Name:	"Inverted	Question	Mark"	BBCode:	¿	Hex:	BA	Name:	"Inverted	Exclamation	Mark"	BBCode:	¡	Hex:	BB	Name:	"Small	Alpha"	BBCode:
[font=courier	new]α[/font]	Hex:	BC	Name:	"Small	Beta"	BBCode:	[font=verdana]β[/font]	Hex:	BD	Name:	"Small	Gamma"	BBCode:	[font=times	new	roman]γ[/font]	Hex:	BE	Name:	"Capital	Delta"	BBCode:	[font=times	new	roman][size=x]∆[/size][/font]	(?)	Hex:	BF	Name:	"Small	Delta"	BBCode:	[font=times	new	roman]δ[/font]	Hex:	C0	Name:	"Small
Epsilon"	BBCode:	[font=verdana]ε[/font]	Hex:	C1	Name:	"Left	Bracket"	BBCode:	[Hex:	C2	Name:	"Small	Lambda"	BBCode:	[font=times	new	roman]λ[/font]	Hex:	C3	Name:	"Small	Mu"	BBCode:	[font=verdana]μ[/font]	Hex:	C4	Name:	"Small	Pi"	BBCode:	[font=times	new	roman]π[/font]	Hex:	C5	Name:	"Small	Rho"	BBCode:	[font=courier	new]ρ[/font]
Hex:	C6	Name:	"Capital	Sigma"	BBCode:	[font=arial]Σ[/font]	Hex:	C7	Name:	"Small	Sigma"	BBCode:	[font=arial]σ[/font]	Hex:	C8	Name:	"Small	Tau"	BBCode:	[font=times	new	roman]τ[/font]	Hex:	C9	Name:	"Small	Phi"	BBCode:	[font=times	new	roman]φ[/font]	Hex:	CA	Name:	"Capital	Omega"	BBCode:	[font=times	new	roman]Ω[/font]	Hex:	CB	Name:
"X	Mean"	BBCode:	[img]	/img]	Hex:	CC	Name:	"Y	Mean"	BBCode:	[img]	/img]	Hex:	CD	Name:	"Superscript	X"	BBCode:	[font=times	new	roman][sup]×[/sup][/font]	Hex:	CE	Name:	"Ellipsis"	BBCode:	[font=verdana]…[/font]	Hex:	CF	Name:	"Left	Pointing	Triangle"	BBCode:	[font=courier	new]◄[/font]	Hex:	D0	Name:	"Block"	BBCode:	[font=courier
new]▪[/font]	Hex:	D1	Name:	"Per"	BBCode:	[img]	/img]	Hex:	D2	Name:	"Hyphen"	BBCode:	-	Hex:	D3	Name:	"Area"	BBCode:	[font=verdana]²[/font]	Hex:	D4	Name:	"Temperature"	BBCode:	[font=arial]°[/font]	Hex:	D5	Name:	"Cube"	BBCode:	[font=verdana]³[/font]	Hex:	D6	Name:	"Enter"	BBCode:	n/a	Hex:	D7	Name:	"Imaginary	I"	BBCode:	[font=times
new	roman][i]i[/i][/font]	Hex:	D8	Name:	"P	Hat"	BBCode:	[img]	/img]	Hex:	D9	Name:	"Small	Chi"	BBCode:	[font=times	new	roman]χ[/font]	Hex:	DA	Name:	"Stat	F"	BBCode:	[img]	/img]	Hex:	DB	Name:	"Natural	Logarithm	E"	BBCode:	[font=times	new	roman][i]e[/i][/font]	Hex:	DC	Name:	"List	Capital	L"	BBCode:	[font=arial][size=x]L[/size][/font]	(?)
Hex:	DD	Name:	"Finance	Capital	N"	BBCode:	[font=arial][b]N[/b][/font]	Hex:	DE	Name:	"Two	Right	Parentheses"	BBCode:))	Hex:	DF	Name:	"Block	Arrow"	BBCode:	[img]	/img]	Hex:	E0	Name:	"Cursor	Overwrite"	BBCode:	[img]	/img]	Hex:	E1	Name:	"Cursor	Overwrite	Second"	BBCode:	[img]	/img]	Hex:	E2	Name:	"Cursor	Overwrite	Capital	A"	BBCode:
[img]	/img]	Hex:	E3	Name:	"Cursor	Overwrite	Small	A"	BBCode:	[img]	/img]	Hex:	E4	Name:	"Cursor	Insert"	BBCode:	[img]	/img]	Hex:	E5	Name:	"Cursor	Insert	Second"	BBCode:	[img]	/img]	Hex:	E6	Name:	"Cursor	Insert	Capital	A"	BBCode:	[img]	/img]	Hex:	E7	Name:	"Cursor	Insert	Small	A"	BBCode:	[img]	/img]	Hex:	E8	Name:	"Graph	Line"	BBCode:
[img]	/img]	Hex:	E9	Name:	"Graph	Thick"	BBCode:	[img]	/img]	Hex:	EA	Name:	"Graph	Above"	BBCode:	[img]	/img]	Hex:	EB	Name:	"Graph	Below"	BBCode:	[img]	/img]	Hex:	EC	Name:	"Graph	Path"	BBCode:	[img]	/img]	Hex:	ED	Name:	"Graph	Animate"	BBCode:	[img]	/img]	Hex:	EE	Name:	"Graph	Dot"	BBCode:	[img]	/img]	Hex:	EF	Name:	"Up	Block"
BBCode:	[img]	/img]	Hex:	F0	Name:	"Down	Block"	BBCode:	[img]	/img]	Hex:	F1	Name:	"Cursor	Full"	BBCode:	[img]	/img]	Hex:	F2	Name:	"Dollar	Sign"	BBCode:	[font=arial]$[/font]	Hex:	F3	Name:	"Square	Up"	BBCode:	[img]	/img]	Hex:	F4	Name:	"Sharp	S"	BBCode:	[font=verdana][b]ß[/b][/font]	Hex:	F5	Name:	"MathPrint	Mixed	Fraction	Separator"
BBCode:	[font=verdana][b]˽[/b][/font]	Hex:	F6	Name:	"MathPrint	Fraction	Slash"	BBCode:	[img]	/img]	Hex:	F7	Name:	"MathPrint	Entry	Box"	BBCode:	[img]	/img]	Character	Map	Page	3	TI-Basic	Developer	Home:	68k	Welcome	to	TI-Basic	Developer	(TI|BD),	the	TI-Basic	information	repository!	If	you	are	a	first-time	visitor,	please	check	out	the
welcome	pack	to	get	you	up	to	speed	on	using	the	site.	We	encourage	you	to	become	a	member	and	to	get	involved	in	the	community,	and	to	come	back	often	to	see	what	changes	have	occurred.	And	above	all	else,	enjoy	your	stay!	Search	the	Site	There	is	a	wide	range	of	68k	Basic	content	available	on	this	site,	so	we	recommend	using	the	search
engine	or	referring	to	the	sitemap.	If	you	can't	find	what	you're	looking	for,	leave	a	post	in	the	forums	and	somebody	will	assist	you.	Search	is	temporarily	unavailable,	we	are	working	to	bring	it	online!	Page	4	The	randPoly()	Command	Command	Summary	Generates	a	random	polynomial.	Command	Syntax	randPoly(var,deg)	Menu	Location	Press	2nd
MATH	to	enter	the	MATH	popup	menu.	Press	7	to	enter	the	Probability	submenu.	Press	8	to	select	randPoly(.	Calculator	Compatibility	This	command	works	on	all	calculators.	Token	Size	1	byte	The	randPoly()	command	generates	a	random	polynomial.	randPoly(var,deg)	generates	a	random	polynomial	in	variable	var	of	degree	deg.	The	coefficients	of
each	power	of	var	are	random	integers	from	-9	to	9.	:RandSeed	0	:randPoly(x,5)	4*x^5-2*x^4-7*x^2+8*x+8	Advanced	Uses	Using	the	RandSeed	command	makes	the	resulting	polynomial	entirely	predictable:	every	time	you	set	the	random	seed	to	some	variable,	you	will	get	the	same	random	coefficients	afterwards.	Also	see	RandSeed	for	details	of
how	random	numbers	are	generated.	Error	Conditions	260	-	Domain	error	happens	when	the	value	of	deg	is	not	between	0	and	99.	Related	Commands	rand()	randMat()	randNorm()	RandSeed	commandmathpolynomialprobabilityrandom	Page	5	68k	Command	Index	Some	commands	have	a	superscript	next	to	them	that	indicates	compatibility:	2.xx
indicates	that	the	command	requires	AMS	2.xx	or	higher	on	a	TI-89,	TI-92,	or	TI-92+	(or	any	3.00+	version,	on	the	TI-89	Titanium	and	V200).	3.xx	indicates	that	the	command	requires	a	TI-89	Titanium	or	V200	calculator,	as	well	as	AMS	3.xx	or	higher.	Flash	indicates	that	the	command	requires	a	calculator	with	Flash	ROM	(that	is,	it	won't	work	on	a
TI-92).	Page	6	Time	And	Date	Commands	The	OS	version	2.07	update	introduced	several	commands	for	dealing	with	times	and	dates.	Some	of	these	rely	on	the	built-in	clock,	while	others	are	used	for	formatting.	TI-84+	programmers	will	not	find	many	differences	in	function	here	—	these	commands	were	added	to	both	calculator	series	at	the	same
time,	and	are	almost	exactly	the	same.	The	only	difference	is	the	addition	of	the	getTmZn()	and	setTmZn()	commands,	and	the	absence	of	a	days-between-dates	command.	Low-Level	Commands	startTmr()	—	This	command	returns	the	current	value	of	a	timer	that	is	updated	every	second	when	the	clock	is	enabled.	This	value	doesn't	correspond	to	any
actual	time,	but	can	be	used	with	checkTmr()	to	get	a	time	difference.	checkTmr()	—	checkTmr(t)	is	equivalent	to	startTmr()-t.	This	can	be	used	to	get	the	time	elapsed	since	startTmr	was	used.	ClockOn,	ClockOff	—	Enables	or	disables	the	hardware	clock.	isClkOn()	—	Tests	if	the	clock	is	enabled	or	not.	Time	Commands	setTime()	—	Sets	the	current
time,	in	hours,	minutes,	and	seconds.	If	the	clock	is	enabled,	this	time	will	be	updated	every	second.	getTime()	—	Returns	the	current	time	as	the	list	{hours,	minutes,	seconds}.	This	command	is	unaffected	by	time	format.	setTmFmt()	—	Sets	the	time	format	-	12	hour,	or	24	hour.	getTmFmt()	—	Returns	this	time	format	setting.	getTmStr()	—	Returns
the	current	time	as	a	string,	affected	by	time	format	(though	you	can	override	it	with	an	optional	argument).	setTmZn()	—	Sets	the	current	time	zone,	as	an	offset	(in	minutes)	from	GMT.	getTmZn()	—	Returns	the	current	time	zone.	Date	Commands	setDate()	—	Sets	the	current	date	(year,	month,	and	day).	If	the	clock	is	enabled,	this	date	will	be
updated	as	needed.	getDate()	—	Returns	the	current	date	as	the	list	{year,	month,	day}.	This	command	is	unaffected	by	date	format.	setDtFmt()	—	Sets	the	date	format	-	1	for	month/day/year,	2	for	day/month/year,	or	3	for	year/month/day.	getDtFmt()	—	Returns	this	date	format	setting.	getDtStr()	—	Returns	the	current	date	as	a	string,	affected	by
date	format	(though	you	can	override	it	with	an	optional	argument).	Time/Date	Manipulation	timeCnv()	—	Converts	a	number	of	seconds	into	a	list	of	{days,	hours,	minutes,	seconds}	representing	the	same	time	lapse.	dayOfWk()	—	Returns	the	day	of	week	(Sunday	through	Saturday	encoded	as	1	through	7)	of	a	specified	date.	Page	7	Math	Functions
Calculators	are	built	with	one	primary	purpose:	math.	Programming,	game	playing,	and	everything	else	is	secondary.	Thus,	you	will	find	a	number	of	powerful	math	commands.	Although	it	may	seem	that	they	are	of	no	use	to	a	programmer,	programs	sometimes	need	math	functions,	and	many	math	functions	can	be	used	in	clever	ways.	In	this	guide
we'll	group	the	commands	into	the	following	five	categories:	Algebra	Symbolic	manipulation	is	the	primary	cool	factor	of	the	68k	(TI-89,	TI-92,	TI-92+,	and	V200)	calculators.	With	the	solve()	command,	the	calculator	can	give	exact	solutions	to	a	fair	number	of	equations	(of	course,	approximate	solutions	are	even	easier	to	get).	Along	with	a	dozen
variations	on	solve(),	there	are	a	few	commands	for	extracting	various	parts	of	an	expression,	which	should	be	useful	for	writing	your	own	algebraic	tools.	As	on	earlier	calculator	models,	there's	also	logs	and	complex	number	operations,	which	are	even	better	with	symbolic	math.	Here	is	the	complete	list	of	algebraic	commands:	For	basic	arithmetic,
the	68k	calculators'	advantage	is	that	it	can	do	exact	calculations	with	integers	up	to	256255-1	(and	approximate	floating-point	decimal	calculations	up	to	101000-1).	Here	is	the	complete	list	of	arithmetic	commands:	+,	-,	*,	/,	‾,	^	√(),	!,	%,	▶,	0b,	0h	abs()	approx()	▶Bin	ceiling()	comDenom()	▶Dec	E	exact()	floor()	fPart()	What	with	the	ability	for
symbolic	calculation,	the	68k	calculators	are	much	more	useful	for	calculus	than	other	models;	they	can	do	symbolic	differentiation	and	integration,	as	well	as	calculate	infinite	sums	and	products.	There	are	some	numeric	functions	as	well	carried	over	from	earlier	calculator	models.	Here	is	the	complete	list	of	calculus	commands:	∫(),	∏(),	∑()	arcLen()
avgRC()	d()	deSolve()	fMax()	fMin()	impDif()	3.10	limit()	nDeriv()	nInt()	taylor()	Statistics	is	the	one	field	in	which	the	68k	calculators	don't	stand	out	compared	to	other	TI	models.	In	fact,	there	are	considerably	less	statistical	tools	than,	say,	on	the	TI-83	series	calculators	(compare	their	page	on	statistics).	What	there	is	left	is	mostly	a	variety	of
regression	models:	For	all	of	these,	use	the	ShowStat	command	to	display	the	results	in	a	dialog	box,	and	look	at	the	statistical	system	variables	for	more	information.	There	are	also	some	general-purpose	commands	for	sample	statistics:	Finally,	you	can	plot	data	with	the	NewPlot	command	(see	also	PlotsOn	and	PlotsOff).	Trigonometry	The	main
thing	to	remember	when	doing	trig	is	to	be	aware	of	what	angle	mode	you're	in.	By	default,	you're	using	radians,	where	a	full	circle	measures	2π.	The	other	two	angle	modes	are	degrees,	where	a	full	circle	is	360,	and	(on	the	newest	OS	versions	for	the	TI-89	Titanium	and	Voyage	200)	"gradians"	where	a	full	circle	measures	400.	The	commands	that
actually	work	with	these	include	the	usual	trig	functions	(half	of	which	—	the	mostly	useless	half	—	were	added	in	OS	version	2.07)	and	their	inverses,	as	well	as	commands	to	convert	rectangular	coordinates	(x,y)	into	polar	coordinates	(r,θ).	There's	also	the	hyperbolic	functions	(there's	a	hyperbolic	equivalent	for	each	of	the	normal	trig	functions).	As
far	as	symbolic	math	is	concerned,	you	can	use	tExpand()	and	tCollect()	to	rearrange	complicated	expressions	using	sin()	and	cos(),	and	hope	to	simplify	them	somewhat	by	doing	so.	The	entire	list	of	trig	commands	is:	Page	8	Frequently	Asked	Questions	(FAQ)	This	FAQ	is	an	attempt	to	answer	the	common	TI-Basic	related	questions	that	people	ask.
Many	of	the	questions	are	related	to	each	other,	so	it	is	recommended	that	you	read	through	the	whole	list.	If	you	have	any	questions	that	aren't	mentioned	on	the	list,	please	post	them	in	the	forum	or	leave	a	comment	at	the	bottom	of	the	page.	Q:	Is	TI-Basic	easy	to	learn?	A:	Yes!	TI-Basic	has	the	majority	of	the	standard	features	and	functionality
that	you	find	in	other	BASIC	programming	language	variants	(i.e.,	things	like	user	input	and	variables	are	very	similar),	so	if	you	can	learn	those	languages,	TI-Basic	should	be	no	problem.	If	TI-Basic	is	your	first	exposure	to	programming,	it	will	require	some	work	to	learn,	but	it	is	definitely	worth	it	because	TI-Basic	is	a	fun	language	to	use.	Q:	How
do	I	learn	TI-Basic?	A:	The	best	way	to	learn	TI-Basic	is	to	download	a	copy	of	the	manual	and	start	making	small,	sample	programs	to	try	out	the	different	TI-Basic	commands.	Once	you	feel	comfortable	with	the	commands,	you	can	start	putting	them	together	to	create	larger	programs.	After	that,	you	should	move	on	to	learning	the	more	advanced
design	concepts	and	techniques	that	are	part	of	TI-Basic.	Q:	Where	can	I	get	information	on	TI-Basic?	A:	The	wiki	you	are	currently	on	has	the	largest	collection	of	TI-Basic	information	available,	including	commands,	design	concepts,	techniques,	and	experimentation.	The	resources	page	also	has	a	comprehensive	list	of	TI-Basic	tutorials	that	you	can
find	elsewhere	on	the	Internet.	In	addition,	you	can	download	all	of	those	tutorials	(and	much	more)	on	the	downloads	page.	Q:	Do	you	have	a	tutorial	about	[subject]?	A:	The	best	way	to	find	out	is	to	use	the	search	box.	If	you	don't	find	what	you	are	looking	for,	leave	a	comment	in	the	forum	and	one	of	us	will	try	to	help	you.	We	won't	guarantee	that
you	will	find	everything	on	this	wiki	that	you	are	looking	for,	since	it	is	a	constant	work	in	progress	and	there	are	simply	too	many	topics	to	cover.	If	you	would	like	to	make	a	suggestion	for	a	new	tutorial,	you	can	add	it	to	the	wiki	to-do	list.	Q:	Where	did	the	TI-Basic	name	come	from?	A:	Back	when	the	language	was	growing	in	popularity	and	use,
people	wanted	a	simple	name	to	refer	to	it	that	was	easy	to	remember	and	told	you	what	it	was.	Because	it	is	the	built-in	programming	language	of	the	TI	graphing	calculators,	and	it	is	a	variant	of	BASIC	(more	or	less),	TI-Basic	is	what	they	called	it.	You	should	note	that	the	name	is	unofficial,	as	TI	has	never	actually	given	it	a	name	(for	example,	try
searching	for	TI-Basic	in	the	calculator	manual;	you	won't	find	it).	Q:	I've	seen	TI-Basic	spelled	with	all	uppercase	(TI-BASIC)	and	with	mixed	case	(TI-Basic),	but	what	is	the	correct	way	to	spell	it?	A:	Truthfully,	there	is	no	one	correct	way	to	spell	it.	It	is	just	a	personal	preference.	On	this	wiki,	however,	you	will	probably	notice	that	we	spell	TI-Basic
with	mixed	case.	The	primary	reason	for	that	decision	is	because	it	is	easier	to	read	(all	caps	aren't	very	reader-friendly).	Q:	What	calculators	support	TI-Basic?	A:	All	of	the	TI	graphing	calculators	have	TI-Basic	support	built-in.	Of	course,	the	calculators	each	have	their	own	TI-Basic	variant	(see	next	question).	Q:	What's	the	difference	between	Z80	TI-
Basic	and	68K	TI-Basic?	A:	Simply	put,	a	whole	lot.	Z80	TI-Basic	lacks	all	sorts	of	things	that	68K	TI-Basic	has,	including	indirection,	local	variables	and	functions,	advanced	picture	manipulation,	text	in	matrices,	and	so	on.	It's	a	shame,	too,	because	these	things	are	extremely	useful,	and	make	TI-Basic	that	much	richer	of	a	language.	Q:	Is	there	a
place	where	I	can	interact	with	other	TI-Basic	programmers?	A:	While	there	is	a	forum	available	here	on	this	wiki	for	TI-Basic	discussion	and	help,	the	best	TI-Basic	forum	in	terms	of	user	activity	is	United-TI,	which	has	a	68k	TI-Basic	section.	In	fact,	the	majority	of	members	of	this	wiki	are	active	members	at	United-TI,	so	you	will	probably	see	us

hanging	around	there.	Games	Q:	Where	can	I	find	TI-Basic	games	and	programs	to	download?	A:	On	our	resources	page,	you	will	find	several	links	to	general	TI	related	sites.	One	of	the	best	sites	to	visit	for	games	and	programs	is	ticalc.org,	which	has	the	largest	archive	of	TI-Basic	games	and	programs	of	any	site	on	the	Internet.	You	can	also	browse
our	own	program	archives,	which	can	be	found	here.	Q:	What	is	an	emulator?	A:	An	emulator	allows	you	to	run	a	virtual	form	of	your	calculator	on	your	computer,	which	is	very	convenient	when	you	want	to	make	quick	changes	to	programs,	or	do	any	debugging	or	optimizing.	There	are	several	emulators	available	for	you	to	use,	so	you	should	just
experiment	to	see	which	one	you	prefer.	Q:	I	downloaded	an	emulator	for	my	calculator,	but	it	won't	work	because	it	says	it	needs	a	ROM	image.	What	is	that?	A:	A	ROM	image	is	simply	an	instance	of	your	calculator,	which	tells	the	emulator	that	you	own	your	calculator.	It	is	primarily	used	as	a	safeguard	because	only	one	person	is	supposed	to	be
using	any	one	ROM	image.	To	download	the	ROM	image	to	your	computer,	you	just	link	your	calculator	to	your	computer,	and	then	the	emulator	should	be	able	to	download	the	ROM	image	off	of	it.	Q:	I	have	an	awesome	idea	for	a	game,	but	I	don't	know	how	to	program.	Can	you	program	it	for	me?	A:	While	we	would	like	to	help	you	program	your
game,	we	each	have	our	own	projects	that	we're	working	on	and	other	real-world	things	(like	school	and	a	job)	that	occupy	our	time,	so	we	aren't	able	to	program	your	game	for	you.	At	the	same	time,	if	you	have	a	specific	TI-Basic	programming	question	that	you	need	help	with,	we'd	be	happy	to	help	you.	Even	better	than	us	programming	your	game,
though,	is	you	programming	it	yourself	(see	next	question).	Q:	What	do	I	need	to	make	games?	A:	The	main	things	you	need	to	make	games	are	your	TI	calculator	and	calculator	manual.	Before	you	actually	implement	a	game,	however,	you	should	plan	it	out.	This	involves	coming	up	with	the	idea	for	the	game	and	working	out	the	many	details	of	the
game:	graphics,	gameplay,	menus,	and	so	on.	Once	you	have	all	of	those	things	figured	out,	you	just	need	to	put	them	into	action.	Q:	What	is	a	good	tutorial	for	making	games?	A:	Unfortunately,	there	really	is	no	comprehensive	game	tutorial	available.	Instead,	there	are	several	small	tutorials	that	each	cover	different	aspects	of	games.	In	addition,	on
this	wiki	there	are	quite	a	few	techniques	covered	—	see	for	example	the	Special	Topics	section.	Q:	Can	I	use	a	routine	from	this	wiki	in	my	game?	A:	Yes!	In	fact,	we	encourage	it.	All	of	the	routines	on	this	site	are	designed	to	be	as	optimized	and	efficient	as	possible,	so	that	readers	learn	the	best	way	to	program.	Q:	Can	I	use	sprites	from	other
games	in	my	own	game?	A:	The	general	consensus	among	the	calculator	programming	community	is	that	using	somebody	else's	graphics	in	your	game	is	fine,	as	long	as	you	get	their	permission	to	do	so.	However,	if	you	don't	plan	on	releasing	your	game	to	the	community,	but	instead	just	keeping	it	to	yourself	and	your	friends,	then	it	doesn't	really
matter.	Programming	Q:	How	do	I	draw	graphics?	A:	68k	TI-Basic	has	many	graphics	commands.	Probably	the	most	useful	ones	are	the	*Pic	commands	(such	as	XorPic,	which	can	be	used	to	display	images	of	any	size	anywhere	on	the	screen.	However,	other	commands,	such	as	Line	are	also	useful.	Q:	Can	I	do	[task]	in	TI-Basic?	A:	While	it's	possible
to	do	almost	anything	in	TI-Basic,	whether	it	looks	nice	and	runs	at	a	decent	speed	is	a	different	matter.	If	you	have	thoroughly	planned	your	program	and	made	it	as	optimized	as	possible,	and	your	program	still	takes	a	minute	to	load	and	there's	a	five	second	lag	after	each	key	press,	that's	a	good	indicator	that	you	should	probably	use	assembly	or	C
instead.	At	the	same	time,	you	should	always	strive	to	push	the	boundaries	of	TI-Basic.	Q:	How	do	I	convert	a	number	to	a	string	and	vice	versa?	A:	The	string()	command	can	be	used	to	convert	any	variable	type	to	a	string.	To	convert	in	the	other	direction,	use	the	expr()	command.	Q:	My	program	is	extremely	large.	Is	there	a	way	to	manage/condense
the	code	better?	A:	First	of	all,	your	program	will	probably	shrink	in	size	after	the	first	time	you	run	it,	due	to	tokenization.	If	that's	not	enough	for	you,	see	the	optimization	page	for	more	tricks.	Q:	Are	there	any	undocumented	features	(Easter	eggs)	in	TI-Basic?	A:	Unlike	the	TI-83	version	of	TI-Basic,	virtually	everything	we	know	about	the	68k
calculators'	TI-Basic	is	documented	somewhere.	However,	there	are	some	features	that	the	manual	doesn't	emphasize	but	are	quite	useful	to	TI-Basic	programmers.	An	example	is	the	alternate	parameters	of	the	setMode()	command.	Q:	How	do	you	disable	the	ON	key?	A:	This	is	impossible	in	pure	TI-Basic.	Using	Try..EndTry	blocks,	you	can	disable
the	ON	key	during	text	input,	but	the	only	way	to	disable	it	universally	is	with	an	assembly	program	or	Exec	code.	Q:	How	do	I	hide	the	code	of	my	TI-Basic	program?	A:	This	is	impossible	—	if	someone	can	run	your	program,	they	can	see	the	code	as	well.	You	really	shouldn't	try	to	hide	the	code	too,	but	let	others	learn	from	it	instead.	Troubleshooting
Q:	My	calculator	can't	handle	expressions	with	several	variables,	(e.g.	it	can't	factor	x^2+y^2+2xy).	How	do	I	fix	this?	A:	When	you	type	xy	next	to	each	other,	the	calculator	doesn't	treat	it	as	multiplication,	but	as	a	different	variable	called	"xy".	Write	x*y	instead	and	you	should	have	no	trouble.	Q:	I've	entered	a	simple	expression	and	am	confident	of
the	result,	but	the	calculator	gives	something	bizarre!	(For	example,	d(x^2,x)	gives	10	as	a	result)	What's	wrong?	A:	Make	sure	all	the	variables	you're	manipulating	in	a	general	way	(x,	in	the	example)	are	actually	undefined.	If	not,	delete	them	using	DelVar.	Otherwise,	their	values	will	get	substituted	and	you'll	get	a	weird	answer.	This	can	result	in
other	surprising	errors	as	well.	Q:	I	think	some	of	the	routines	on	this	wiki	have	errors	in	them	because	they	didn't	work	for	me.	Could	you	please	correct	them?	A:	We	have	strived	to	make	sure	that	all	of	the	routines	on	this	site	work	correctly	and	without	problems.	However,	if	you	are	100%	sure	that	you	entered	the	routine	correctly	into	your
calculator,	please	leave	a	comment	on	the	page	using	the	comment	function	at	the	bottom	of	the	page.	Somebody	will	then	be	able	to	correct	the	routine	so	that	it	won't	cause	anybody	else	any	problems.	Q:	I	was	playing	a	TI-Basic	game	and	my	calculator	suddenly	shut	off.	When	I	turned	it	back	on,	my	memory	was	erased.	What	happened?	A:	Your
game	had	a	glitch	of	some	kind,	and	it	caused	the	calculator	to	crash.	This	is	usually	caused	by	Assembly	programs,	as	the	majority	of	TI-Basic	errors	are	caught	by	the	calculator.	You	don't	have	to	worry	very	much	about	TI-Basic	crashes	because	they	don't	do	any	real	permanent	damage	to	the	calculator,	but	because	it	is	very	annoying	to	have	to
replace	all	of	your	programs	after	your	RAM	is	cleared,	you	should	always	store	any	important	files	in	the	archive.	Q:	When	I	tried	to	run	my	TI-Basic	program,	I	got	this	error	message.	What	does	it	mean?	A:	Most	error	messages	are	fairly	self-explanatory,	but	if	you're	still	confused,	you	should	consult	our	list	of	error	messages	with	a	more	in-depth
explanation.	Q:	The	transferring	program,	TI	Connect,	does	not	work	for	me.	How	do	I	fix	it?	A:	TI	Connectivity	issues	can	be	a	problem	on	both	the	Mac	and	Windows	platforms.	Here	are	some	listed	solutions	for	the	Windows	and	Mac	platforms.	Mac:	Uninstall	and	reinstall	TI	Connect	Kill	the	process	"TI	Connect	Manager	X".	This	can	be	done	using
Activity	Monitor.	Start	Activity	Monitor	in	/Applications/Utilities,	then	find	"TI	Connect	Manager	X"	in	the	list	of	processes	(if	you	can't	find	it,	just	type	"ti"	on	your	keyboard).	Select	it,	then	click	the	X	icon	in	the	top	left	corner	of	Activity	Monitor.	Click	Force	Quit.	Then	you	can	restart	the	device	manager,	and	it	should	detect	your	calculator.	In	some
cases,	disconnecting	your	calculator	or	turning	it	off	will	always	cause	TI	Connect	Manager	X	to	crash,	and	you	will	need	to	kill	it	every	time	you	need	to	connect	it	to	your	computer.	To	make	this	process	easier,	there	is	a	script	here	that	you	can	use	to	automate	this	process.	Use	a	different	USB	port.	Windows:	Reinstallation	should	fix	most	problems.
Check	to	make	sure	the	plug	(on	both	ends)	are	firmly	in	the	port.	Assembly/C	Q:	How	does	TI-Basic	compare	to	Assembly	or	C?	A:	TI-Basic	is	much	easier	to	learn	and	program	in,	but	it	is	rather	slow	because	it	is	an	interpreted	language.	TI-Basic	has	many	good	graphics	commands,	but	will	still	be	slower	than	assembly	or	C	programs;	also,	TI-Basic
programs	are	limited	in	control	over	the	calculator.	Q:	Is	it	possible	to	convert	TI-Basic	to	Assembly?	A:	No,	it	is	not.	There	are	currently	no	working	programs	available	that	will	convert	TI-Basic	to	Assembly	(note:	I	say	working	because	people	have	tried	creating	TI-Basic	to	Assembly	converters,	but	nobody	has	completed	one	yet),	so	the	only	way	you
can	convert	a	TI-Basic	program	to	Assembly	is	by	learning	Assembly	and	porting	the	program	yourself.	You	could	also	try	asking	an	Assembly	programmer	to	port	it	for	you,	but	most	people	won't	do	that	unless	the	program	is	pretty	small.	However,	if	you	are	looking	to	speed	up	your	TI-Basic	program,	you	have	the	option	of	using	BasicBuilder	3.0,
which	packages	your	TI-Basic	program	into	an	application.	Q:	I	want	to	use	an	Assembly	program	with	my	TI-Basic	program,	but	I	can't	figure	out	how	to	use	it.	Can	you	help	me?	A:	Unfortunately,	we	really	can't	do	much	for	you.	What	we	recommend	is	that	you	contact	the	author	of	the	Assembly	program	and	ask	them	for	help.	They	wrote	the
program,	so	naturally,	they	should	be	able	to	answer	any	questions	that	you	have.	[[/div]]	Page	9	Click	here	to	edit	contents	of	this	page.	Click	here	to	toggle	editing	of	individual	sections	of	the	page	(if	possible).	Watch	headings	for	an	"edit"	link	when	available.	Append	content	without	editing	the	whole	page	source.	Check	out	how	this	page	has
evolved	in	the	past.	If	you	want	to	discuss	contents	of	this	page	-	this	is	the	easiest	way	to	do	it.	View	and	manage	file	attachments	for	this	page.	A	few	useful	tools	to	manage	this	Site.	See	pages	that	link	to	and	include	this	page.	Change	the	name	(also	URL	address,	possibly	the	category)	of	the	page.	View	wiki	source	for	this	page	without	editing.
View/set	parent	page	(used	for	creating	breadcrumbs	and	structured	layout).	Notify	administrators	if	there	is	objectionable	content	in	this	page.	Something	does	not	work	as	expected?	Find	out	what	you	can	do.	General	Wikidot.com	documentation	and	help	section.	Wikidot.com	Terms	of	Service	-	what	you	can,	what	you	should	not	etc.	Wikidot.com
Privacy	Policy.	Page	10	Strings	and	Their	Commands	A	string	is	a	collection	of	letters	(usually	called	characters)	in	order.	They	are	most	commonly	used	for	displaying	text,	although	they	can	be	adapted	to	any	purpose.	See	the	character	codes	page	for	a	table	of	the	characters	that	can	be	part	of	a	string.	To	write	a	string,	use	quote	marks	around	the
characters	you	want	it	to	contain.	For	example,	"Hello"	is	a	string	containing	the	characters	H,	e,	l,	l,	and	o,	in	that	order.	Using	the	string()	command,	you	can	also	create	a	string	out	of	any	other	variable	type.	On	the	TI-68k	calculators,	strings	have	an	advantage	over	lists	or	matrices	-	they	are	a	random	access	structure,	which	means	that	accessing
the	end	of	the	string	is	just	as	fast	as	accessing	the	end	of	the	string	(for	a	list,	on	the	other	hand,	the	calculator	has	to	go	through	every	previous	element	of	the	list	to	get	to	an	element	at	the	end).	Although	strings	are	awkward	to	access	normally,	so	short	strings	are	at	a	disadvantage	compared	to	lists,	long	enough	strings	will	beat	out	lists	and
matrices,	at	least	for	accessing	a	specific	character.	Except	for	the	constraint	of	memory,	there	is	no	limit	to	the	amount	of	characters	in	a	string.	There	are	two	special	operators	that	can	be	used	on	strings	-	&	(concatenation)	and	#	(indirection).	The	concatenation	operator,	&,	joins	two	strings	together	-	"Hello"&"	world"	returns	"Hello	world".	The
indirection	operator,	#,	replaces	a	string	containing	the	name	of	a	variable	by	the	variable	itself	-	#"f"(x)	is	the	same	as	f(x)	(this	can	be	very	powerful,	especially	for	non-algebraic	variables	such	as	pictures).	(annoyingly,	there	is	no	easy	way	to	type	#,	on	a	TI-89.	You	can	select	it	from	the	character	menu	(2nd	CHAR,	3,	3)	or	from	the	catalog)	The
relational	operators	(=,	≠,	>,	≥,	Page	14	Lists	and	Their	Commands	A	list	is	a	collection	of	elements	in	order.	On	the	TI-68k	calculators,	lists	can	contain	any	mix	of	any	variable	type	that's	valid	in	an	expression:	you	can	have	lists	of	numbers,	lists	of	strings,	lists	of	truth	values	or	expressions.	You	can	even	mix	and	match	variable	types	—	it's	perfectly
all	right	to	have	a	string	in	one	element,	and	a	number	in	the	next.	The	only	special	case	is	lists	of	lists:	these	are	kind	of	allowed,	but	they're	called	matrices,	and	have	some	further	restrictions.	Lists	are	written	using	curly	brackets	{	and	}	around	the	elements,	separated	by	commas.	For	example,	{1,2,3,4,5}	is	a	list	containing	the	numbers	1	through
5	in	that	order.	You	can	access	a	certain	element	of	the	list	by	writing	the	number	of	the	element	you	want	in	[]	brackets	after	it:	listvar[5]	would	select	the	5th	element	of	listvar.	Elements	are	numbered	starting	with	1.	On	earlier	calculator	models,	lists	had	the	random	access	property:	accessing	any	element	of	a	list	took	the	same	amount	of	time.
This	was	possible	because	the	lists	were	restricted	to	numbers.	On	the	68k	calculators,	since	lists	can	mix	element	types,	they	are	no	longer	random	access:	the	calculator	has	to	go	through	the	entire	list	to	get	to	an	element,	so	the	larger	an	index	is,	the	longer	it	takes	to	access.	This	isn't	significant	for	short	lists.	But	taking	the	100th	element,	for
example,	takes	approximately	twice	as	long	as	taking	the	1st	element,	and	the	time	keeps	increasing	linearly,	so	it	can	be	very	slow	to	access	the	last	elements	of	a	long	list.	Except	for	the	constraint	of	free	memory,	and	of	the	time	it	takes	to	access	elements,	there	is	no	limit	on	the	number	of	elements	a	list	may	have.	Operations	on	Lists	Many
commands,	including	math	commands	and	others,	can	be	extended	to	lists	by	applying	them	to	each	element	of	the	list.	An	example	is	sin():	sin({1,2,3})	{sin(1)	sin(2)	sin(3)}	If	a	command	has	more	than	one	argument,	there	are	two	ways	to	extend	it	to	apply	to	lists.	One	is	to	use	it	with	a	list	and	a	regular	argument:	then	the	command	will	be	applied
to	each	element	of	the	list	paired	up	with	the	regular	argument.	Here	is	this	way	illustrated	with	mod()	mod({10,20,30},7)	{3	6	2}	The	other	way	is	to	make	both	arguments	lists.	In	that	case,	the	lists	must	be	the	same	size,	and	each	element	of	the	first	list	will	be	paired	with	the	corresponding	element	of	the	second.	For	example:	mod({10,20,30},
{7,8,9})	{3	4	3}	Although	in	these	examples,	mod()	could	be	extended	in	both	ways,	sometimes	only	one	is	possible.	PtOn,	for	example,	(as	well	as	other	point	commands)	can	be	used	with	two	numbers,	or	two	lists,	but	not	with	a	list	and	a	number.	round(),	on	the	other	hand,	can	be	used	with	two	numbers,	or	a	list	and	a	number,	but	will	give	a
meaningless	expression	when	applied	to	two	lists.	A	noteworthy	special	case	is	the	basic	math	operators	(+,	-,	*,	/,	‾,	and	^),	which	can	all	be	used	with	lists	(in	both	ways).	List-Specific	Commands	Of	course,	there	are	commands	specifically	designed	for	use	with	lists.	Several	of	these,	such	as	dim()	or	rotate(),	can	be	also	used	with	strings.	Many	of
these	commands	are	found	in	the	list	menu	(Press	2nd	MATH	to	access	the	popup	math	menu,	then	select	3:List).	augment()	crossP()	cumSum()	dim()	dotP()	exp▶list()	Fill	left()	Δlist()	list▶mat()	mat▶list()	max()	mid()	min()	newList()	polyEval()	product()	right()	rotate()	seq()	shift()	SortA	SortD	sum()	Several	statistics	commands	can	be	applied	to	lists
as	well.	Conditionals	With	Lists	Conditional	statements,	like	If,	when(),	and	While,	accept	lists	of	truth	values	as	well	as	single	truth	values.	The	check	will	be	interpreted	as	true	if	and	only	if	every	element	of	the	list	is	true,	effectively	combining	each	element	of	the	list	with	and.	The	most	common	way	for	lists	of	truth	values	to	be	created	is	with
relational	operators	(=,	≠,	>,	≥,	,	Page	17	Click	here	to	edit	contents	of	this	page.	Click	here	to	toggle	editing	of	individual	sections	of	the	page	(if	possible).	Watch	headings	for	an	"edit"	link	when	available.	Append	content	without	editing	the	whole	page	source.	Check	out	how	this	page	has	evolved	in	the	past.	If	you	want	to	discuss	contents	of	this
page	-	this	is	the	easiest	way	to	do	it.	View	and	manage	file	attachments	for	this	page.	A	few	useful	tools	to	manage	this	Site.	See	pages	that	link	to	and	include	this	page.	Change	the	name	(also	URL	address,	possibly	the	category)	of	the	page.	View	wiki	source	for	this	page	without	editing.	View/set	parent	page	(used	for	creating	breadcrumbs	and
structured	layout).	Notify	administrators	if	there	is	objectionable	content	in	this	page.	Something	does	not	work	as	expected?	Find	out	what	you	can	do.	General	Wikidot.com	documentation	and	help	section.	Wikidot.com	Terms	of	Service	-	what	you	can,	what	you	should	not	etc.	Wikidot.com	Privacy	Policy.	Page	18	Errors	This	table	lists	all	the
possible	error	messages	that	can	occur.	The	error	number	to	the	left	is	not	displayed,	but	is	stored	to	the	errornum	system	variable,	which	can	be	used	in	a	Try..EndTry	block.	Some	error	messages	are	very	explicit	(like	#	810),	but	others	are	less	so.	Where	the	error	message	itself	gave	too	little	information,	this	table	explains	the	error	more
thoroughly.	A	large	part	of	the	information	here	was	taken	from	Appendix	B	of	the	TI-89	manual.	Error	Number	Error	Description	10	A	function	did	not	return	a	value	20	A	test	did	not	resolve	to	TRUE	or	FALSE	This	error	usually	occurs	when	comparing	an	undefined	variable,	in	a	statement	such	as	If.	30	Argument	cannot	be	a	folder	name	40
Argument	error	50	Argument	mismatch	Two	of	the	arguments	must	be	of	the	same	type.	For	example,	PtOn	can	be	used	with	two	numbers,	or	two	lists.	But	a	number	and	a	list	can't	be	used	together.	60	Argument	must	be	a	Boolean	expression	or	integer	For	use	with	logic	commands	such	as	or	They	can	be	applied	to	two	truth	values,	or	bitwise	to
two	integers.	70	Argument	must	be	a	decimal	number	80	Argument	must	be	a	label	name	90	Argument	must	be	a	list	100	Argument	must	be	a	matrix	110	Argument	must	be	a	Pic	120	Argument	must	be	a	Pic	or	string	Happens	with	a	Title	used	in	a	toolbar.	The	"Pic"	part	only	applies	to	the	widescreen	calculators,	not	the	89	or	89	Titanium	130
Argument	must	be	a	string	140	Argument	must	be	a	variable	name	This	can	also	indicate	an	invalid	variable	name	such	as	1xy.	150	Argument	must	be	an	empty	folder	name	Folders	can't	be	deleted	if	they're	not	empty.	160	Argument	must	be	an	expression	For	example,	zeros(2x+3=0,x)	is	not	valid	because	2x+3=0	is	an	equation.	Use	zeros(2x+3,x)
instead	—	the	=0	is	implied	with	this	command.	161	ASAP	or	Exec	string	too	long	This	error	is	caused	by	the	assembly	program	RAM	limit.	The	limit	is	not	present	on	HW1	calculators;	on	others,	it's	8k	with	AMS	2.03	or	lower,	and	24k	with	AMS	2.04	or	higher.	If	you	try	to	run	an	assembly	program	that	exceeds	the	limit,	you'll	get	this	error.	163
Attribute	(8-digit	number)	of	object	(8-digit	number)	not	found	165	Batteries	too	low	for	sending/receiving	product	code	170	Bound	The	lower	bound	must	be	less	than	the	upper	bound.	This	error	can	happen,	for	example,	with	the	zero	finder	on	the	graph.	180	Break	The	ON	key	was	pressed	during	a	calculation	or	while	running	a	program.	This	error
usually	can't	be	caught	by	Try..EndTry	blocks,	unless	it	happens	in	a	text	prompt.	185	Checksum	error	190	Circular	definition	Circular	definitions	of	a	variable	are	caught:	for	example,	a+1→a	(if	a	is	undefined).	But	circular	definitions	of	a	function	are	handled	by	a	limit	on	recursion	depth.	200	Constraint	expression	invalid	See	the	page	for	the	|	(with)
operator	for	more	details.	210	Data	type	An	argument	is	of	the	wrong	data	type.	220	Dependent	limit	The	same	variable	can't	be	used	as	both	an	integration	variable	and	a	bound.	For	example,	∫(sin(x),x,0,x)	wouldn't	be	allowed.	225	Diff	Eq	setup	230	Dimension	An	index	went	out	of	the	bounds	of	a	list	or	matrix.	For	example,	list[5]	when	list	is	equal
to	{1,2,3,4}.	240	Dimension	mismatch	Some	commands	require	their	list	or	matrix	arguments	to	match	in	size.	For	example,	you	can't	add	the	lists	{1,2}	and	{1,2,3}.	250	Divide	by	zero	Take	that,	James	Anderson!	260	Domain	error	Some	commands	only	accept	numbers	within	a	certain	range.	For	example,	ans()	only	works	with	numbers	1-99.	270
Duplicate	variable	name	280	Else	and	ElseIf	invalid	outside	If..Then	block	Well,	actually,	Try..EndTry	blocks	also	use	Else.	But	you	didn't	hear	me	say	that.	290	EndTry	is	missing	the	matching	Else	statement	295	Excessive	iteration	Happens	when	an	iterative	solver	runs	for	too	long	without	finding	a	solution.	This	usually	means	there	isn't	one,	except
in	truly	horrible	cases.	300	Expected	2	or	3-element	list	or	matrix	This	happens	with	commands	that	deal	with	2	or	3-dimensional	vectors.	307	Flash	application	extension	(function	or	program)	not	found	308	Flash	application	not	found	310	First	argument	of	nSolve	must	be	a	univariate	expression	English	translation:	the	only	undefined	variable	that
can	be	in	nSolve()'s	expression	is	the	one	you're	solving	for.	320	First	argument	of	solve	or	cSolve	must	be	an	equation	or	inequality	For	example,	solve(2x+3,x)	is	invalid	because	2x+3	isn't	an	equation.	Of	course,	zeros()	has	exactly	the	opposite	problem.	330	Folder	Sometimes	the	calculator	likes	being	laconic.	This	error	happens	in	the	VAR-LINK
menu	if	a	variable	is	stored	to	a	folder	that	doesn't	exist.	335	Graph	functions	y1(x)..y99(x)	not	available	in	Diff	Equations	mode	345	Inconsistent	units	350	Index	out	of	range	360	Indirection	string	is	not	a	valid	variable	name	380	Invalid	ans()	That	is,	that	many	answers	haven't	been	stored	yet.	390	Invalid	assignment	400	Invalid	assignment	value	405
Invalid	axes	410	Invalid	command	420	Invalid	folder	name	430	Invalid	for	the	current	mode	settings	440	Invalid	implied	multiply	The	syntax	a(b)	is	only	used	for	function	calls,	not	for	multiplying	a	and	b.	If	a	is	not	a	defined	function,	the	calculator	assumes	you	tried	to	multiply,	and	gives	this	error.	450	Invalid	in	a	function	or	current	expression	A
user-defined	function	can't	change	global	variables,	or	use	certain	commands.	This	also	happens	in	prompts,	such	as	the	Data/Matrix	Editor.	460	Invalid	in	Custom..EndCustm	block	470	Invalid	in	Dialog..EndDlog	block	480	Invalid	in	Toolbar..EndTBar	block	490	Invalid	in	Try..EndTry	block	500	Invalid	label	Label	names	have	the	same	limitations	as
variable	names.	510	Invalid	list	or	matrix	Lists	can	only	be	1-dimensional	(lists)	or	2-dimensional	(lists	of	lists).	Lists	of	lists	are	matrices,	and	any	non-rectangular	stuff	(e.g.	{1,{2,3}})	is	not	allowed.	520	Invalid	outside	Custom..EndCustm	or	Toolbar..EndTBar	blocks	530	Invalid	outside	Dialog..EndDlog,	Custom..EndCustom,	or	Toolbar..EndTBar
blocks	540	Invalid	outside	Dialog..EndDlog	block	550	Invalid	outside	function	or	program	560	Invalid	outside	Loop..EndLoop,	For..EndFor,	or	While..EndWhile	blocks	570	Invalid	pathname	580	Invalid	polar	complex	You	might	think	that	this	is	a	prohibition	against	building	military	bases	on	the	North	Pole.	Actually,	this	is	used	with	the	∠	command.
For	example,	(i∠2)	is	invalid.	590	Invalid	syntax	block	For	the	miscellaneous	errors	with	Dialog..EndDlog,	Custom..EndCustm,	and	Toolbar..EndTBar	blocks.	600	Invalid	table	605	Invalid	use	of	units	610	Invalid	variable	name	in	a	Local	statement	Reserved	variables,	for	example,	can't	be	made	local.	620	Invalid	variable	or	function	name	The	variable
name	is	being	used	for	a	built-in	function.	630	Invalid	variable	reference	640	Invalid	vector	syntax	650	Link	transmission	665	Matrix	not	diagonalizable	670	or	673	Memory	680	Missing	(690	Missing)	700	Missing	"	710	Missing]	720	Missing	}	730	Missing	start	or	end	of	block	syntax	For	example,	an	If	without	an	EndIf	to	go	with	it.	740	Missing	Then
in	the	If..EndIf	block	750	Name	is	not	a	function	or	program	765	No	functions	selected	780	No	solution	found	Most	commands	usually	think	of	something	clever	to	return,	instead.	So	this	error	only	occurs	with	the	interactive	graph	tools.	790	Non-algebraic	variable	in	expression	800	Non-real	result	Only	happens	if	the	calculator	is	in	real	number
mode.	810	Not	enough	memory	to	save	current	variable.	Please	delete	unneeded	variables	on	the	Var-Link	screen	and	re-open	editor	as	current	OR	re-open	editor	and	use	F1	8	to	clear	editor.	830	Overflow	The	possible	range	of	a	floating	point	number	is	between	-101000	and	101000	(not	inclusive).	However,	sometimes	an	overflow	is	replaced	by
infinity	instead.	840	Plot	setup	850	Program	not	found	860	Recursion	is	limited	to	255	calls	deep	870	Reserved	name	or	system	variable	System	variables	cannot	be	deleted,	for	example.	875	ROM-resident	routine	not	available	880	Sequence	setup	885	Signature	error	890	Singular	matrix	895	Slope	fields	need	one	selected	function	and	are	used	for
1st-order	equations	only	900	Stat	Statistics.	910	Syntax	An	expression	or	entry	just	doesn't	make	sense.	For	example,	2+2+.	930	Too	few	arguments	940	Too	many	arguments	950	Too	many	subscripts	"Too	many"	is	more	than	two.	955	Too	many	undefined	variables	960	Undefined	variable	965	Unlicensed	product	software	or	Flash	application	970
Variable	or	Flash	application	in	use	980	Variable	is	locked,	protected,	or	archived	990	Variable	name	is	limited	to	8	characters	1000	Window	variables	domain	1010	Zoom	1020	Internal	Error	1030	Protected	memory	violation	Page	19	68k	TI-Basic	for	83	TI-Basic	Programmers	This	tutorial	is	meant	as	an	introduction	to	68k	TI-Basic	for	programmers
that	already	are	fairly	experienced	with	TI-83	series	Basic	programming.	Instead	of	re-teaching	many	things,	this	tutorial	highlights	the	differences	between	the	two	languages.	Major	Features	A	major	novelty	of	the	68k	calculators	is	the	ability	to	make	symbolic	calculations.	This	has	many	applications:	you	can	deal	with	expressions	such	as	x2+2*x+1
but	treat	x	as	an	unknown,	or	deal	with	the	exact	value	of	√π/3	without	approximating	it	with	floating-point	values.	The	calculator	no	longer	has	some	statistical	commands,	but	has	much	more	powerful	calculus	commands	(it	can	do	symbolic	derivatives,	integrals,	and	finite	and	infinite	sums,	among	other	things).	This	doesn't	have	any	immediate
programming	applications,	although	you	can	often	find	an	unexpected	use	for	these	commands.	A	very	programming-relevant	difference,	on	the	other	hand,	is	the	advent	of	error	catching.	Using	the	Try	and	EndTry	statements,	your	program	can	identify	if	an	error	has	occurred,	and	possibly	even	recover	from	this	(or	at	least	display	a	custom	error
message).	Also	one	of	the	highlights	is	how	much	pictures	have	been	empowered.	They	now	can	be	any	size	and	be	displayed	with	any	logic.	True	"real-time"	multiplayer	games	is	now	possible	with	the	SendCalc	Command,	something	that	was	impossible	on	83's.	The	more	specific	differences	described	below	tend	to	combine	to	make	programs	run
faster,	and	allow	for	a	programming	style	closer	to	programming	a	more	"serious"	language	on	a	computer.	Commands	On	the	TI-89,	commands	can	be	entered	letter	by	letter,	and	don't	have	to	be	chosen	from	a	menu.	In	practice,	programs	and	functions	are	tokenized,	making	a	command	range	take	up	1	to	3	bytes	in	a	program.	Many	commands
have	been	added	or	removed	between	the	two	languages	(see	the	command	index	for	a	full	list	of	commands).	In	addition,	the	following	commands	have	changed	in	spelling:	There	are	two	more	overall	changes.	First,	many	commands'	names	have	been	truncated	where	they	were	longer	than	8	characters:	this	is	the	maximum	for	a	command	name	on
the	TI-89.	An	example	is	RclPic,	the	68k	equivalent	of	RecallPic.	Second,	the	use	of	parentheses	after	a	command	now	follows	a	strict	convention.	"Instructions"	—	commands	that	do	not	return	a	value	—	do	not	require	parentheses	(e.g.	If,	Text,	etc.)	"Functions"	—	commands	that	do	return	a	value	—	require	parentheses	(e.g.	sin(),	setMode(),	etc.)
Even	functions	with	no	arguments	use	parentheses	(e.g.	getKey(),	startTmr(),	etc.)	Many	commands	have	been	added.	However,	as	far	as	statistics	goes,	the	68k	calculators	are	inferior,	even,	to	the	TI-83	series;	most	of	the	functionality	is	now	restricted	to	regressions,	and	the	calculator	doesn't	even	know	internally	how	to	calculate	most	probability
distributions.	Variables	The	way	variables	are	stored	has	undergone	major	changes	from	the	TI-83	series.	All	variables	now	share	a	common	naming	system:	the	name	of	a	variable	can	be	up	to	8	letters	long.	Variables	can	also	be	placed	in	different	folders,	which	can't	be	nested	but	otherwise	are	very	similar	to	file	folders	on	a	computer.	By	default,
variables	are	stored	in	the	folder	'main'.	On	the	surface,	the	variable	types	are	much	the	same	as	they	were	on	the	TI-83	calculators:	you	have	numerical	variables,	lists,	matrices,	strings,	picture	variables,	equations,	graph	databases,	and	a	new	one,	called	"data".	These	are	slightly	different,	however.	To	begin	with,	numerical	variables	can	now	be
either	floating-point	(the	same	as	on	the	TI-83	series)	or	integer	variables	(that	don't	have	a	decimal	place,	but	have	several	hundred	digits	of	precision).	As	a	consequence	of	the	symbolic	operations	on	a	68k	calculator,	you	also	have	expressions:	formulas	that	are	only	evaluated	as	much	as	possible.	List	are	very	different.	They	now	can	hold	any
combination	of	numbers,	expressions,	and	character	strings.	This	makes	them	more	powerful,	but	also	slows	them	down	significantly.	Data's	are	basically	matrices,	but	with	the	new	capabilities	(and	speed	limitations)	of	the	new	lists.	Matrices	stayed	the	same	though,	limited	to	numbers,	but	retained	their	speed.	You	can	effectively	emulate	an	"old
style"	list	by	using	a	matrix	with	only	1	row/column,	Boolean	variables	will	also	cause	some	confusion	for	TI-83	programmers:	Instead	of	boolean	(true/false)	operations	returning	a	one	or	a	zero	that	can	be	used	in	the	same	manner	as	regular	integers	(1,	3,	-5,	4.8,	etc.),	boolean	variables	now	all	have	a	class	of	their	own.	This	means	that	you	can't	use
a	simple	"If	(variable)"	statement	to	check	whether	a	variable	has	yet	been	defined,	and	can't	use	shortcuts	in	expressions	that	involve	a	parenthetical	boolean	statement	determining	whether	a	certain	term	in	the	expression	is	used	(e.x.	(k>2)(x+1)+3x).	Instead,	you	will	have	to	use	the	ifVar()	command	to	check	whether	a	variable	has	been	defined
and	return	to	regular	If-Then	blocks	for	conditional	computing.	Programs	Programs	are	also	considered	variables,	on	the	same	level	as	any	other:	you	can	even	define	a	program	within	another	program.	They	imitate	built-in	commands,	and	can	even	be	given	parameters.	Using	the	Local	command,	you	can	declare	local	variables	that	are	reset	to	their
old	values	once	a	program	finishes	running.	You	can	also	define	functions,	which	are	similar	to	programs	but	return	a	value.	Functions	have	some	other	limitations,	though:	they	can	only	use	local	variables,	and	can't	modify	any	global	aspects	of	the	calculator	(so	graphical	commands,	for	example,	are	limited	to	programs).	With	local	variables,	and	the
ability	to	define	functions	and	programs,	you	can	program	in	a	procedural	language	style.	Instead	of	placing	the	entire	code	of	the	program	in	one	block,	you	can	split	it	up	into	functions	and	subprograms	that	are	defined	at	the	beginning	of	the	main	program.	The	entire	issue	of	memory	leaks	(caused	on	the	TI-83	series	by	jumping	out	of	code	blocks
with	Goto)	is	no	longer	present	in	68k	TI-Basic.	Loops	have	offsets	linking	the	end	to	the	beginning,	so	the	program	doesn't	need	to	keep	a	stack	to	be	aware	of	what	to	do	with	End	instructions.	There	is	no	longer	any	memory	cost	to	entering	a	loop	(or	any	other	kind	of	code	block),	so	it's	impossible	to	leak	memory	this	way.	Optimizations	Most	types
of	trivial	optimizations	from	the	TI-83	series	are	invalid	on	the	68k	calculators.	For	example,	closing	parentheses,	quotes,	and	brackets	are	now	mandatory	—	but	don't	add	any	size	to	the	program,	since	it's	tokenized	and	converted	to	postfix	notation.	The	Ans	variable	no	longer	plays	an	important	role:	though	the	ans()	command	does	exist	to	replace
it,	it's	not	modified	by	storing	to	variables	inside	a	program,	so	it's	mostly	useful	on	the	home	screen.	A	large	part	of	68k	optimization	revolves	around	careful	use	of	lists.	List	variables	are	no	longer	random	access:	accessing	the	last	element	of	a	list	is	much	slower	than	accessing	the	first	element.	For	this	reason,	going	through	a	list	in	a	For	loop	is
about	the	worst	thing	you	could	do.	Graphics	68k	gives	the	programmer	much	more	options	with	displaying	graphics.	Sprites,	which	had	to	be	displayed	using	various	tricks	or	libraries	on	a	TI-83	series	calculator,	are	built	into	68k	as	picture	variables.	These	picture	variables	bear	little	resemblance	to	the	screenshot-like	functionality	they	have	on	a
TI-83+.	They	can	be	any	size	from	1x1	to	the	entire	screen,	and	can	be	stored	from	and	recalled	to	any	part	of	the	graph	screen.	There	are	even	several	commands	for	displaying	a	sprite	using	different	logic.	Apart	from	these	very	powerful	commands,	more	ordinary	commands	have	also	been	buffed	up.	Virtually	all	graphics	commands	have	a	point
and	a	pixel	equivalent,	so	you're	free	to	choose	one	or	the	other	to	use	(usually,	you'll	want	pixels).	The	Circle	command	now	draws	circles	instantaneously,	as	opposed	to	taking	several	seconds.	Instead	of	being	forced	to	choose	between	home	screen	and	graph	screen,	the	choice	is	between	graph	screen	and	"Program	I/O"	screen	on	the	68k
calculators.	The	program	I/O	screen	is	a	separate	home	screen	for	programs,	which	is	limited	to	text	(but	the	text	doesn't	have	to	be	aligned).	In	addition,	both	screens	can	be	spiced	up	using	dialogs,	which	imitate	the	appearance	of	a	popup	window	on	a	computer,	and	are	great	for	inputting	data	without	having	to	erase	anything	from	the	screen.
Another	major	addition	to	the	graphics	command	set	is	the	newly	created	Dialog	feature.	New	commands	add	extra	I/O	capability	that	doesn't	interfere	with	the	program	I/O	or	the	graph	screen,	allowing	for	enhanced	in-program	data	entry.	There	is	one	limit	to	graphics	on	the	68k	calculators	-	they	cannot	draw	over	the	top	menu	bar	and	bottom
status	bar,	so	are	effectively	limited	to	only	2/3	of	the	screen.	Assembly	libraries	can	be	used	to	access	the	entire	screen,	but	this	is	impossible	in	TI-Basic	alone.	Closing	Words	This	page	gives	an	overview	of	some	of	the	features	of	68k,	but	it	isn't,	and	cannot,	be	complete.	There	are	other	pages	you	could	visit	to	get	a	better	picture	of	68k
programming:	Command	Index	FAQ	Sample	Programs	However,	the	best	way	to	try	to	learn	the	language	is	first-hand	experience	with	it.	Page	20	Key	Codes	This	table	contains	the	values	returned	by	getKey()	for	each	(keypress,	modifier)	pair.	Unlike	the	getKey	found	on	TI-83	series	calculators,	the	68k	calculators'	getKey()	returns	keypresses	with
modifiers.	On	the	TI-92,	TI-92+,	and	Voyage	200,	the	key	layout	is	different.	The	same	effect	(e.g.	F8)	still	corresponds	to	the	same	value	(e.g.	275),	but	is	obtained	differently	(by	pressing	F8,	in	this	example,	rather	than	2nd+F3).	The	alpha	key	is	replaced	by	the	"grab"	button	for	the	arrow	keys.	Notice	that	the	key	codes	for	typing	a	character
correspond	to	that	characters	character	code.	For	example,	the	key	code	for	typing	"A"	is	65,	and	ord("A")	will	also	return	65.	This	even	applies	to	the	key	codes	for	the	international	characters	that	aren't	shown	in	this	table.	Key	Modifier	None	⇧	(shift)	2nd	♦	(diamond)	alpha	Result	Value	Result	Value	Result	Value	Result	Value	Result	Value	F1	F1
268	F1	268	F6	273	Y=	8460	F1	268	F2	F2	269	F2	269	F7	274	WINDOW	8461	F2	269	F3	F3	270	F3	270	F8	275	GRAPH	8462	F3	270	F4	F4	271	F4	271	F4	271	TblSet	8463	F4	271	F5	F5	272	F5	272	F5	272	TABLE	8464	F5	272	♦	(diamond)	copy	24576	cut	12288	alpha	a-lock	ESC	ESC	264	ESC	264	QUIT	4360	PASTE	8456	ESC	264	APPS	APPS	265
APPS	265	SWITCH	4361	8457	APPS	265	ON	ON	267	OFF	HOME	HOME	277	HOME	277	CUST	4373	HOME	277	HOME	277	MODE	MODE	266	MODE	266	▶	18	_	95	MODE	266	CATALOG	CATLG	278	CATLG	278	i	151	∞	190	CATLG	278	←	(backspace)	←	257	←	257	INS	4353	DEL	8449	←	257	CLEAR	CLEAR	263	CLEAR	263	CLEAR	263	8455	CLEAR
263	X	x	120	X	88	ln(4184	e^(8280	x	120	Y	y	121	Y	89	sin(4185	sinֿ¹(8281	y	121	Z	z	122	Z	90	cos(4186	cosֿ¹(8282	z	122	T	t	116	T	84	tan(4180	tanֿ¹(8276	t	116	^	^	94	^	94	π	140	θ	136	^	94	|	|	(with)	124	F	70	°	176	FORMAT	8316	f	102	((40	B	66	{	123	b	98))	41	C	67	}	125	©	169	c	99	,	,	44	D	68	[91	8236	d	100	÷	/	47	E	69]	93	!	33	e	101	×	*	42
J	74	√(4138	&	38	j	106	-	-	45	O	79	VAR-LINK	4141	contrast	+	o	111	+	+	43	U	85	CHAR	4139	contrast	-	u	117	ENTER	ENTER	13	ENTER	13	ENTRY	4109	APPROX	8205	ENTER	13	STO▶	→	258	P	80	RCL	4354	@	64	p	112	=	=	61	A	65	'	39	≠	157	a	97	EE	E	149	K	75	∠	159	SYMB	8341	k	107	(-)	-	173	SPACE	32	ans(1)	4372	8365	SPACE	32	.	.	46	W	87	>
62	≥	158	w	119	0	0	48	V	86	<	60	≤	156	v	118	1	1	49	Q	81	"	34	8241	q	113	2	2	50	R	82	\	92	8242	r	114	3	3	51	S	83	UNITS	4147	8243	s	115	4	4	52	L	76	:	58	8244	l	108	5	5	53	M	77	MATH	4149	8245	m	109	6	6	54	N	78	MEM	4150	8246	n	110	7	7	55	G	71	∫(4151	8247	g	103	8	8	56	H	72	d(4152	8248	h	104	9	9	57	I	73	;	59	8249	i	105	Arrow	key	Modifier
None	⇧	(shift)	2nd	♦	(diamond)	alpha/@	⇐	(left)	337	16721	4433	8529	33105	⇑	(up)	338	16722	4434	8530	33106	⇒	(right)	340	16724	4436	8532	33108	⇓	(down)	344	16728	4440	8536	33112	⇖	(left+up)	339	16723	4435	8531	33107	⇗	(right+up)	342	16726	4438	8534	33110	⇙	(left+down)	345	16729	4441	8537	33113	⇘	(right+down)	348	16732
4444	8540	33116	An	easy	way	to	find	the	value	of	a	keypress	without	having	to	consult	this	page	is	to	write	a	short	program	to	output	key	codes:	:Prgm	:Local	k	:0→k	:While	k=0	:getKey()→k	:EndWhile	:Text	string(k)	:EndPrgm	Page	21	Character	Codes	This	page	contains	the	character	codes	used	internally	by	the	calculator.	This	table	can	be	useful
in	particular	with	the	char()	and	ord()	commands.	Characters	in	the	following	ranges	can	be	used	for	variable	names:	48…57	(numbers,	as	long	as	they	don't	begin	a	variable	name)	65…90,	97…122	(the	usual	alphabet,	case	insensitive)	128…139,	141…148,	181	(Greek	letters,	case	sensitive:	ω	is	not	the	same	as	Ω)	192…214,	216…246,	248…255
(international	characters,	case	insensitive)	Note	that	value	2	(STX)	cannot	be	used	on	the	home	screen,	because	for	some	reason	it	does	not	exist	in	large	font.	Value	Char	Value	Char	Value	Char	Value	Char	Value	Char	Value	Char	Value	Char	Value	Char	0.	NUL	32.	space	64.	@	96.	‘	128.	α	160.	…	192.	À	224.	à	1.	SOH	33.	!	65.	A	97.	a	129.	β	161.	¡
193.	Á	225.	á	2.	STX	34.	"	66.	B	98.	b	130.	Γ	162.	¢	194.	Â	226.	â	3.	ETQ	35.	#	67.	C	99.	c	131.	γ	163.	£	195.	Ã	227.	ã	4.	EOT	36.	$	68.	D	100.	d	132.	Δ	164.	¤	196.	Ä	228.	ä	5.	ENQ	37.	%	69.	E	101.	e	133.	δ	165.	¥	197.	Å	229.	å	6.	ACK	38.	&	70.	F	102.	f	134.	ε	166.	¦	198.	Æ	230.	æ	7.	BEL	39.	’	71.	G	103.	g	135.	ζ	167.	§	199.	Ç	231.	ç	8.	BS	40.	(72.	H
104.	h	136.	θ	168.	√	200.	È	232.	è	9.	TAB	41.)	73.	I	105.	i	137.	λ	169.	©	201.	É	233.	é	10.	LF	42.	*	74.	J	106.	j	138.	ξ	170.	a	202.	Ê	234.	ê	11.	VT	43.	+	75.	K	107.	k	139.	∏	171.	«	203.	Ë	235.	ë	12.	FF	44.	,	76.	L	108.	l	140.	π	172.	¬	204.	Ì	236.	ì	13.	CR	45.	-	77.	M	109.	m	141.	ρ	173.	‾	205.	Í	237.	í	14.	(lock)	46.	.	78.	N	110.	n	142.	∑	174.	®	206.	Î	238.	î	15.
✓	47.	/	79.	O	111.	o	143.	σ	175.	-	207.	Ï	239.	ï	16.	■	48.	0	80.	P	112.	p	144.	τ	176.	°	208.	Ð	240.	ð	17.	◀	49.	1	81.	Q	113.	q	145.	φ	177.	±	209.	Ñ	241.	ñ	18.	▶	50.	2	82.	R	114.	r	146.	ψ	178.	²	210.	Ò	242.	ò	19.	▲	51.	3	83.	S	115.	s	147.	Ω	179.	³	211.	Ó	243.	ó	20.	▼	52.	4	84.	T	116.	t	148.	ω	180.	‾¹	212.	Ô	244.	ô	21.	←	53.	5	85.	U	117.	u	149.	E	181.	μ	213.	Õ
245.	õ	22.	→	54.	6	86.	V	118.	v	150.	e	182.	¶	214.	Ö	246.	ö	23.	↑	55.	7	87.	W	119.	w	151.	i	183.	·	215.	×	247.	÷	24.	↓	56	8	88.	X	120.	x	152.	r	184.	+	216.	Ø	248.	ø	25.	◀	57.	9	89.	Y	121.	y	153.	T	185.	¹	217.	Ù	249.	ù	26.	▶	58.	:	90.	Z	122.	z	154.	\bar{x}	186.	o	218.	Ú	250.	ú	27.	↑	59.	;	91.	[123.	{	155.	\bar{y}	187.	»	219.	Û	251.	û	28.	∪	60.	<	92.	\
124.	|	156.	≤	188.	d	220.	Ü	252.	ü	29.	∩	61.	=	93.]	125.	}	157.	≠	189.	∫	221.	Ý	253.	ý	30.	⊂	62.	>	94.	^	126.	~	158.	≥	190.	∞	222.	Þ	254.	þ	31.	∈	63.	?	95.	_	127.	♦	159.	∠	191.	¿	223.	ß	255.	ÿ	Page	22	68k	Basic	Starter	Kit	Welcome	to	the	TI-Basic	Developer	(TI|BD)	68k	Basic	Starter	Kit!	This	tutorial	is	designed	to	help	new	68k	programmers	get	their
feet	off	the	ground.	The	tutorial	is	divided	into	chapters	that	each	have	their	own	focus,	and	is	meant	to	be	read	in	sequential	order.	If	you	have	questions	or	get	stuck,	leave	a	post	on	the	forums	and	somebody	will	assist	you.	Happy	coding!	Page	23	Usability	Imagine	you	are	using	a	program	for	the	first	time.	You	have	no	prior	knowledge	about	the
program;	someone	just	put	the	program	on	your	calculator	without	giving	you	any	instructions	and	now	you	are	trying	to	figure	out	how	to	use	it.	After	literally	pressing	all	the	buttons	on	the	calculator	and	trying	all	sorts	of	key	combinations,	you	give	up	and	tell	your	friend	the	program	was	useless.	You	then	delete	the	program	because	you	figure	it's
worthless	if	you	can't	use	it.	This	example	isn't	based	off	any	one	particular	program	(I	don't	want	to	name	names,	but	more	importantly	talk	in	the	general	sense),	but	it	does	resonate	with	lots	of	program	users	who	have	had	a	similar	experience.	What	this	problem	really	is	about	is	poor	user-friendliness	—	more	commonly	known	as	usability.	The
definition	of	usability	is	simply	how	easy	it	is	for	people	to	use	a	program,	and	how	much	value	it	provides.	While	usability	can	take	on	many	different	forms,	there	are	some	essential	things	that	you	can	do	to	make	a	program	more	user-friendly.	In-Game	Help	Probably	the	easiest	way	to	make	a	program	user-friendly	is	by	including	some	in-game	help.
While	you	ideally	want	your	program	to	be	so	easy	to	use	that	a	user	can	simply	pick	it	up	and	figure	out	how	to	play	it,	not	every	game	is	so	straightforward,	and	the	average	user	probably	needs	some	help.	The	best	place	to	include	help	in	a	program	is	as	one	of	the	options	in	the	program's	menu.	When	the	user	comes	across	the	menu,	they	will	see
the	help	option	and	they	can	select	it	to	view	the	help.	The	help	does	not	need	to	cover	every	minute	detail	about	the	program,	but	rather	just	explain	the	objective	of	the	game	and	detail	what	keys	are	used	for	controls.	:PopUp	{"Option	1","Option	2","Help"},option	...	:If	option=3	Then	:	Dialog	:	Title	"Help"	:	Text	"The	game	objective	is	..."	:	Text	"Use
the	ENTER	key	to	...	"	:	EndDlog	:EndIf	Because	most	people	do	not	like	using	help	unless	they	have	to,	you	should	try	to	limit	your	help	to	one	or	two	screens	at	most.	At	the	same	time,	if	you	have	an	extremely	complex	game	with	all	sorts	of	features	and	lots	of	keys	are	needed	to	operate	it,	then	it	would	be	appropriate	to	include	help	for	all	of	those
things.	The	general	guideline	is	that	the	amount	of	help	needed	correlates	to	the	size	of	the	game.	Protect	the	User	The	next	thing	you	can	do	to	make	a	user-friendly	program	is	to	protect	the	user	from	themselves.	Often	times	in	a	program	you	will	want	to	think	about	what	could	go	wrong	and	try	to	either	prevent	it	from	happening	or	tell	the	user
what's	wrong.	Preventing	it	from	happening	involves	you,	the	programmer,	programming	in	safety	protections	for	the	user	so	that	they	aren't	even	aware	that	something	went	wrong.	Say	the	program	calls	for	the	user	to	type	in	a	number	between	1-1000	and	the	user	types	in	5000.	If	your	program	just	goes	on	with	this	value,	it	will	probably	crash	at
some	point	later	on.	Rather,	it's	necessary	to	check	the	value	and	ask	for	the	number	again	if	it's	wrong.	For	example:	:Input	"Enter	a	number	1	to	1000",n	:While	n1000	:	Disp	"The	number	must	be	1	to	1000!"	:	Input	"Enter	the	number	again",n	:EndWhile	Sometimes	it	might	be	impractical	to	check	whether	an	input	is	valid.	In	that	case,	an
alternative	is	to	use	Try..Else..EndTry	blocks.	If	an	error	occurs,	the	program	will	jump	to	the	"Else"	part	of	the	block,	with	the	error	code	stored	to	the	system	variable	errornum.	You	can	either	display	a	generic	error	message	or	try	to	use	the	error	code	to	figure	out	what	went	wrong.	Teacher	Key	Another	part	of	making	a	user-friendly	program	is	to
include	helpful	features.	Since	the	target	audience	is	often	in	high	school,	a	feature	sure	to	be	appreciated	is	a	"teacher	key."	This	is	a	special	key	that	the	user	can	use	to	quickly	exit	the	program.	When	the	teacher	comes	around,	they	then	want	to	be	able	to	get	back	to	the	home	screen]	so	they	don't	get	their	calculator	taken	away.	This	problem	is
quite	easy	to	prevent	with	a	teacher	key.	In	every	program	there	is	a	main	loop	that	runs	throughout	the	life	of	the	program.	You	need	to	add	a	check	for	whatever	teacher	key	you	want	at	the	place	in	the	main	loop	where	you	check	for	user	input.	Make	sure,	of	course,	that	the	user	knows	which	key	is	the	teacher	key!	:Loop	:	:	getKey()→key	:	If
key=	:	Exit	:	:EndLoop	Progress	Indicators	In	games	that	use	maps,	the	program	has	to	go	through	the	list	of	maps	and	then	load	the	appropriate	one	for	the	user	to	use.	Depending	on	the	size	and	number	of	maps,	this	can	take	a	while.	If	the	user	doesn't	know	what	is	going	on,	they	probably	will	think	the	program	stalled	or	something	else	went
wrong.	While	there	are	a	couple	different	ways	you	can	cut	down	on	the	loading	times	for	maps	(see	subprograms	and	compression),	the	easiest	way	to	solve	the	problem	is	by	simply	telling	the	user	what	is	going	on	and	showing	the	user	some	progress.	You	don't	have	to	do	anything	fancy	(in	fact,	you	probably	shouldn't	because	that	would	just	waste
valuable	memory),	just	something	to	help	the	user	understand	the	situation.	For	example,	say	you	are	randomly	placing	mines	throughout	the	map	(it's	a	Minesweeper	game),	you	then	could	just	display	a	"Placing	Mines"	message	on	the	screen	and	then	have	a	loop	for	the	progress	indicator	that	matches	the	current	map	loading:	:For	x,1,20	:	©	fill
the	map	with	mines	:	Output	0,0,"Placing	mines:	"&string(x)&"/20"	:EndFor	The	KISS	Principle	The	last	important	point	of	program	user-friendly	is	following	the	KISS	principle.	For	those	who	haven't	heard	of	KISS,	it	is	an	acronym	which	stands	for	Keep	It	Simple	Stupid.	The	basic	point	of	KISS	is	to	not	clutter	your	program	with	unnecessary
features	and	useless	fluff.	It	also	entails	making	the	program	easy	to	figure	out	for	those	who	don't	have	access	to	a	readme.	It	is	not	uncommon	to	see	a	TI-Basic	math	program	(i.e.	quadratic	solver)	that	has	a	menu,	about	screen	with	scrolling	credits,	and	includes	some	game	in	case	you	somehow	get	bored	solving	quadratic	equations.	While	those
things	by	themselves	aren't	bad,	they	are	completely	inappropriate	in	a	math	program.	There	is	a	certain	elegance	that	comes	with	"programs	that	do	one	thing	and	do	it	well."	This	is	known	as	the	Unix_philosophy,	and	should	really	be	what	every	program	strives	for.	>	Page	24	Assembly	Ti	Basic	Programs	are	executed	by	calling	built-in	functions
already	written	for	you	on	the	calculator.	Ti	Basic	Programs	are	really	not	executed,	they	are	interpreted	by	the	calculator's	operating	system.	That	means	that	the	calculator	'reads'	the	programs,	and	then	executes	the	appropriate	function.	For	each	command	that	is	read	in	the	calculator,	several	native	commands	may	be	executed.	This	means	that
the	calculator's	Central	Processing	Unit	will	have	to	do	more	processing	to	execute	the	program.	This	is	usually	not	a	problem	for	small,	simple	programs;	but	if	you	are	considering	making	a	game,	or	other	complex	application,	it	is	probably	a	good	idea	to	use	Assembly	as	your	programing	language.	How	Assembly	Programs	are	Executed	Assembly
programs	are	executed	natively.	That	means	that	the	Central	Processing	Unit	is	able	to	directly	interpret	your	code,	instead	of	having	to	rely	on	commands	from	the	operating	system.	This	also	gives	you	more	control	over	the	calculator.	Too	much	control?	Before	sending	ANY	assembly	program	to	your	calculator,	make	sure	it	is	from	a	verified	source.
This	is	because	when	you	execute	an	Assembly	Program,	you	give	the	program	complete	control	of	the	calculator.	An	assembly	program	can	directly	edit	both	RAM,	and	ROM,	enabling	it	to	erase	the	Operating	System,	install	a	virus,	log	your	keystrokes.	This	is	an	Assembly	Program	is	a	Native	Application,	meaning	it	is	directly	executed	by	the
Central	Processing	Unit.	Should	I	use	Assembly?	If	you	are	creating	a	rather	simple	program,	or	function	,	then	you	should	probably	stick	with	Ti-Basic.	But,	if	you	are	creating	a	more	complex	program,	like	a	game,	then	you	might	want	to	consider	Assembly.	Because	Assembly	runs	faster,	your	game	will	have	better	performance.	Where	can	I	start?
The	two	main	types	of	assembly	programs	are	either	written	directly	in	Assembly,	or	in	a	Compiled	language,	like	C.	A	compiled	language	is	translated	into	Assembly,	making	it	easier	to	learn.	However,	programming	directly	in	assembly	gives	you	more	control.	I	am	a	beginner	at	assembly	If	you	are	a	complete	beginner,	and	have	never	written	in	C,
or	C++,	then	you	should	start	out	with	C.	C	is	easier	to	write,	and	runs	just	about	as	fast.	Start	with	the	list	of	tutorials	below:	Techno	Plaza	Tutorial	Ti	Chess	Team	Tutorials	General	C	Tutorial	I	have	Programmed	in	C,	or	C++	before	I	am	completely	familiar	with	the	concepts	of	programming,	and	have	had	experience	in	a	least	one	medium-low	level
language.	This	does	NOT	include	C#,	VB.NET,	or	JAVA,	as	these	are	considered	high	level	languages.	Start	with	the	list	of	tutorials	below:	>	Page	25	System	Variables	System	variables	are	special	reserved	variable	names	used	by	some	of	the	commands	internally.	They	exist	outside	the	folder	structure	that	the	other	variables	are	located	in,	so	they
can	be	accessed	in	the	same	way	from	any	folder.	Unlike	normal	variables,	which	take	between	1	and	10	bytes	to	reference,	system	variables	always	take	up	2	bytes,	no	matter	how	long	the	name.	Graph	Variables	The	equation	variables	contain	the	equations	that	get	graphed	for	each	graphing	mode.	They	include:	y1(x)–y99(x)	in	function	mode	xt1(t)–
xt99(t)	and	yt1(t)–yt99(t)	in	parametric	mode	r1(θ)–r99(θ)	in	polar	mode	u1(n)–u99(n)	and	ui1–ui99	in	sequential	mode	z1(x,y)–z99(x,y)	in	3D	mode	y1'(t)–y99'(t)	and	yi1–yi99	in	differential	equation	mode	Cursor	Variables	The	cursor	variables	include	xc,	yc,	zc,	tc,	rc,	θc	and	nc.	Some	of	them	are	updated	whenever	the	crosshair	cursor	is	being	moved
around	on	the	graph	screen,	and	are	especially	useful	with	the	Input	command.	However,	the	rules	that	determine	which	ones	get	updated	are	a	little	tricky:	xc	and	yc	are	always	updated,	regardless	of	any	settings.	The	rest	get	updated	depending	on	graphing	mode:	zc	for	3D	mode,	tc	for	parametric	mode,	rc	and	θc	for	polar	mode,	and	nc	for
sequential	mode.	In	addition,	rc	and	θc	get	updated	even	outside	polar	graphing	mode,	if	the	graph	format	is	set	to	polar	coordinates.	Window	Variables	The	window	variables	define	the	parameters	of	the	graphing	window	-	they	are	not	only	used	for	graphing,	but	also	with	point	commands	such	as	PtOn.	The	most	basic	of	them	are	xmin,	xmax,	ymin,
and	ymax:	these	determine	the	lower	and	upper	bounds	of	the	window.	There	are	also	more	advanced	settings:	xscl	and	yscl	determine	the	distance	between	tick	marks	on	the	axes,	if	the	axes	are	enabled.	Δx	and	Δy	determine	the	distance	between	two	pixels	next	to	each	other.	They	are	calculated	automatically	from	xmin-ymax,	but	you	can	set	them
yourself	(xmax	and	ymax	will	be	adjusted	to	fit).	xfact	and	yfact	determine	the	factor	by	which	the	window	is	stretched	when	you	zoom	in	or	zoom	out.	Some	window	variables	are	specific	to	graphing	mode:	In	function	mode:	xres	determines	the	number	of	pixels	between	sample	points	for	graphs	(a	higher	value	means	lower	quality).	In	parametric
mode:	tmin	and	tmax	determine	the	range	of	the	variable	t	when	graphing.	tstep	determines	the	increment	of	the	t	variable	between	two	sample	points	on	the	graph	(a	higher	value	means	lower	quality).	In	polar	mode:	θmin	and	θmax	determine	the	range	of	the	variable	θ	when	graphing.	θstep	determines	the	increment	of	the	θ	variable	between	two
sample	points	on	the	graph	(a	higher	value	means	lower	quality).	In	sequential	mode:	nmin	and	nmax	determine	the	n	values	to	evaluate	at:	u(nmin),	u(nmin+1),	…,	u(nmax)	will	be	evaluated.	plotStrt	and	plotStep	determine	the	n	values	that	actually	get	graphed:	starting	at	plotStrt,	and	increasing	by	plotStep	each	time.	In	3D	mode:	zmin	and	zmax
(similarly	to	xmin	and	xmax)	control	the	upper	and	lower	bounds	of	the	graphing	window,	for	the	z	coordinate.	zscl	(similarly	to	xscl)	controls	the	distance	between	tick	marks	on	the	z	axis,	if	the	axes	are	enabled.	zfact	(similarly	to	xfact)	controls	the	factor	by	which	the	z-coordinate	is	stretched	when	you	zoom	in	or	out.	xgrid	and	ygrid	determine	the
resolution	of	the	wireframe	grid.	eyeθ,	eyeφ,	and	eyeψ	control	the	viewing	angle	(eyeθ	is	the	angle	with	the	x-axis,	eyeφ	is	the	angle	with	the	z-axis,	and	eyeψ	is	a	rotation	around	the	resulting	line	of	sight)	ncontours	is	the	number	of	contours	to	graph.	In	differential	equation	mode:	t0	determines	the	t-value	for	the	initial	conditions.	tplot	and	tmax
determine	range	of	the	variable	t	when	graphing.	tstep	determines	the	increment	of	the	t	variable	between	two	sample	points	on	the	graph	(a	higher	value	means	lower	quality).	ncurves	determines	the	number	of	solution	curves	drawn	if	you	don't	give	an	initial	condition.	diftol	(with	the	Runge-Kutta	method)	and	Estep	(with	the	Euler	method)
determine	a	step	size	for	calculations.	fldres	determines	the	number	of	columns	for	the	slope	field,	if	one	is	drawn.	dtime	determines	the	point	in	time	at	which	a	direction	field	is	drawn	(if	one	is	drawn	at	all).	fldpic	is	a	picture	variable	that	stores	the	slope	field	to	avoid	redrawing	it	if	it's	unnecessary.	Graph	Zoom	Many	of	the	above	window	variables
have	a	zoom	variable	counterpart,	prefixed	with	a	z.	These	are	saved	by	the	ZoomSto	and	ZoomRcl	commands.	Statistics	Variables	These	variables	are	created	when	you	calculate	a	curve	to	fit	a	set	of	data,	using	one	of	these	commands:	LinReg,	MedMed,	QuadReg,	CubicReg,	QuartReg,	PowerReg,	ExpReg,	LnReg,	or	Logistic.	regeq(x)	is	the	curve
that	was	calculated,	as	a	function	of	x.	regcoef	is	a	list	of	the	coefficients	calculated.	corr	is	the	correlation	coefficient	(a	measure	of	the	direction	and	goodness	of	fit)	of	a	linear	model.	R2	is	the	square	of	corr,	but	can	be	calculated	for	all	models.	A	value	close	to	1	indicates	a	good	fit;	a	value	close	to	0	is	poor.	medx1,	medx2,	medx3,	medy1,	medy2,
and	medy3	are	calculated	by	the	MedMed	method.	Sample	Statistics	These	variables	are	calculated	by	the	OneVar	and/or	TwoVar	commands	(only	those	that	deal	with	one	variable	are	calculated	by	OneVar).	\bar{x}	and	\bar{y}	are	the	averages	of	each	data	set.	Σx	and	Σy	are	the	sums.	Σx2	and	Σy2	are	the	sums	of	the	squares.	Σxy	is	the	sum	of
the	products	of	matching	pairs	of	the	two	data	sets.	minX,	maxX,	minY,	and	maxY	are	the	minimum	and	maximum.	Sx	and	Sy	are	the	sample	standard	deviations.	σx	and	σy	are	the	population	standard	deviations.	nStat	is	the	number	of	elements	in	a	data	set.	medStat,	q1,	and	q3	(for	OneVar	only)	are	the	median,	first	quartile,	and	third	quartile.	Other
Variables	The	rest	of	the	variables	don't	fit	into	any	of	the	above	categories.	c1–c99	are	columns	in	the	last	data	variable	shown	in	the	Data/Matrix	editor.	errornum	contains	an	error	code	once	an	error	has	occured,	for	use	in	Try..Else..EndTry	blocks.	eqn	and	exp	are	used	by	the	numerical	solver	(the	equation	to	be	solved	is	stored	in	eqn,	and	this	is
set	equal	to	exp	if	the	=	sign	was	omitted).	ok	is	set	to	1.	if	a	Dialog	menu	has	been	exited	successfully,	and	0.	if	it	was	exited	with	the	ESC	key.	seed1	and	seed2	are	the	seeds	for	the	random	number	generator	used	by	rand().	sysData	is	the	default	data	variable	used	by	the	BldData	command.	sysMath	stores	the	result	of	any	graphing	calculation	(for
example,	for	calculating	the	derivative	at	a	point	on	the	graph)	tblStart	and	Δtbl	are	used	to	calculate	the	table	input	when	it	is	automatic.	tblInput	stores	the	table	input	when	it's	not	automatic.	Page	26	Matrices	and	Their	Commands	A	matrix	is	a	rectangular	grid	of	elements.	On	the	TI-68k	calculators,	matrices	can	contain	any	mix	of	any	scalar	(non-
list)	variable	type	that's	valid	in	an	expression:	you	can	have	matrices	of	numbers,	matrices	of	strings,	matrices	of	truth	values	or	expressions.	You	can	even	mix	and	match	variable	types	—	it's	perfectly	all	right	to	have	a	string	in	one	element,	and	a	number	in	the	next.	There	are	three	ways	to	enter	a	matrix	on	the	calculator:	Using	nested	[]
brackets:	e.g.	[[a,b,c][d,e,f]]	(this	is	a	matrix	with	2	rows	-	the	row	a,b,c	above	the	row	d,e,f).	Using	[]	brackets	and	semicolons:	e.g.	[a,b,c;d,e,f]	Using	{	}	brackets:	e.g.	{{a,b,c},{d,e,f}}	(this	works	because	matrices	are	actually	stored	as	lists	of	lists)	You	can	access	a	certain	element	of	the	matrix	by	writing	the	coordinates	of	the	element	you	want	in
[]	brackets	after	it:	matrix[r,c]	would	access	the	element	in	the	rth	ROW	and	the	cth	COLUMN	of	the	matrix	(Matrices	are	always	indexed	first	by	the	row,	top	to	bottom,	and	second	by	the	column,	left	to	right).	Also,	using	one	index	—	matrix[r]	—	returns	the	rth	row	of	the	matrix	as	a	1	by	#	matrix.	On	earlier	calculator	models,	matrices	had	the
random	access	property:	accessing	any	element	of	a	matrix	took	the	same	amount	of	time.	This	was	possible	because	the	matrices	were	restricted	to	numbers.	On	the	68k	calculators,	since	matrices	can	mix	element	types,	they	are	no	longer	random	access:	the	calculator	has	to	go	through	the	entire	matrix	to	get	to	an	element,	so	the	larger	an	index
is,	the	longer	it	takes	to	access.	This	isn't	significant	for	small	matrices.	But	the	time	keeps	increasing	linearly,	so	it	can	be	very	slow	to	access	the	last	elements	of	a	large	matrix.	Except	for	the	constraint	of	free	memory,	and	of	the	time	it	takes	to	access	elements,	there	is	no	limit	on	the	number	of	elements	a	matrix	may	have.	Matrices	as	Vectors	In
mathematics,	a	vector	is	a	list	of	n	numbers	with	a	geometrical	representation	in	n-dimensional	space	(two	representations,	actually:	as	a	point	in	n-space,	and	as	a	translation	which	takes	the	origin	to	that	point).	2-	and	3-dimensional	vectors	are	used	respectively	for	2-dimensional	space	(the	plane),	and	the	usual	3-dimensional	space.	On	TI-68k
calculators,	matrices	with	only	one	row,	or	only	one	column,	are	interpreted	as	vectors	for	the	purposes	of	the	commands	dotP(),	crossP(),	and	unitV(),	as	well	as	the	formatting	commands	▶Cylind,	▶Polar,	▶Rect,	and	▶Sphere.	Linear	Algebra	Operations	Common	mathematical	commands	and	operators	extend	to	matrices	in	a	linear	algebraic	way.	+,	-
,	and	*,	for	two	matrices,	are	the	corresponding	matrix	operations	(in	particular,	matrix	multiplication	is	quite	complicated).	^	raises	a	square	matrix	to	an	integer	power	by	multiplying	it	by	itself;	if	the	integer	is	negative,	it	takes	the	inverse	first.	Matrices	have	a	special	operator	just	to	themselves:	T,	called	the	transpose	operator.	It	flips	the	matrix
about	its	main	diagonal,	so	rows	become	columns	and	columns	become	rows.	The	operators	+,	-,	*,	and	/	can	be	applied	to	a	square	matrix	and	a	scalar	as	well,	by	multiplying	the	scalar	by	the	identity	matrix.	For	multiplication	and	division,	this	results	in	the	operation	being	done	to	each	element,	while	addition	and	subtraction	result	in	adding	or
subtracting	the	scalar	to	each	element	on	the	main	diagonal.	Since	occasionally	you	want	to	do	these	operations	element-by-element,	the	alternatives	.+,	.-,	.*,	./,	and	.^	have	been	provided,	which	do	this	for	both	two	matrices	and	for	a	matrix	and	an	expression.	Exponential	and	Trig	Functions	The	calculator	gives	a	special	interpretation	to
exponential	and	trig	functions	applied	to	matrices,	e^()	being	the	most	common.	These	commands	require	the	matrix	to	be	square	and	diagonalizable,	and	return	an	approximate	floating-point	value.	A	diagonalizable	matrix	A	is	one	that	can	be	expressed	in	the	form	A	=	PDP-1,	where	D	and	P	are	square	matrices,	and	D	is	diagonal	—	composed
entirely	of	zeroes	except	on	the	main	diagonal.	If	a	matrix	is	diagonalizable,	the	calculator	can	compute	explicit	values	for	D	and	P	using	eigVl()	and	eigVc():	D	=	diag(eigVl(A))	P	=	eigVc(A)	If	a	matrix	is	not	diagonalizable,	the	result	of	eigVc()	will	not	have	an	inverse.	The	calculator	applies	functions	like	e^()	to	matrices	by	first	writing	the	matrix	in
the	form	PDP-1,	and	then	returning	Pf(D)P-1.	Here,	the	function	is	applied	to	D	by	taking	f()	of	every	diagonal	element	(the	elements	off	the	diagonal	remain	zero).	This	definition	is	used	for	the	following	commands:	^,	ln(),	log(),	and	root()	cos(),	cosֿ¹(),	sin(),	sinֿ¹(),	tan(),	and	tanֿ¹().	cosh(),	coshֿ¹(),	sinh(),	sinhֿ¹(),	tanh(),	and	tanhֿ¹()	Other	Operations	on
Matrices	Most	math	commands	extend	to	matrices	by	being	applied	to	each	element;	gcd()	is	a	good	example.	Yet	other	commands	behave	in	unpredictable	ways.	The	commands	SortA	and	SortD	sort	row	and	column	vectors	as	though	they	were	lists.	The	following	list	math/statistics	commands	act	on	matrices	as	they	would	on	lists	of	lists,	which
results	in	a	row	vector	containing	the	operation	done	on	each	column:	Finally,	there	are	the	commands	that	are	meant	specifically	for	matrices.	These	are	found	in	the	Matrix	submenu	of	the	MATH	popup	menu.	identity()	list▶mat()	LU	mat▶list()	mRow()	mRowAdd()	newMat()	norm()	QR	Conditional	statements,	like	If,	when(),	and	While,	accept
matrices	of	truth	values	as	well	as	single	truth	values.	The	check	will	be	interpreted	as	true	if	and	only	if	every	element	of	the	matrix	is	true,	effectively	combining	each	element	of	the	matrix	with	and.	The	most	common	way	for	matrices	of	truth	values	to	be	created	is	with	relational	operators	(=,	≠,	>,	≥,	Pr(,	R>Pq(,	P>Rx(,	P>Ry(TEST	(Relational)
Operations	TEST	Menu	=,	not	equal,	>,	gt	=,

