

Click to verify

The ACA is a not-for-profit, membership Association which disseminates information on corrosion and its prevention or control by providing training, Share copy and redistribute the material in any medium or format for any purpose, even commercially. Adapt, remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. ShareAlike If your remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by applicable exception or limitation. No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material. In chemistry, an activity series lets you predict the degree to which a particular element reacts with water and acids. Although this type of ordering is primarily used with metals, you can also organize non-metals into an activity series. Different elements exhibit a wide range of reactivity, potential, from explosive to inert. An activity series lists elements ranked with the most reactive at the top and the least reactive at the bottom. Most of the elements in the periodic table are metals. The reactivities distinguished by the listed electrical conductivity and other physical properties. With the exception of mercury, they are all solid, relatively inert, melting points, a defining characteristic of metals is the loose hold they have on their outermost electrons. It is these electrons that participate in chemical reactions and determine the properties. As one goes from the top to the bottom of a column in the periodic table, reacting ability increases. Non-metals are elements such as hydrogen, sulfur, and oxygen. Physically, they tend to be more nucleophilic and better conductors of electrons. These substances have a strong hold on their outer electrons, and may even "rob" nearby metal atoms of some of their electrons. Unlike metals, which tend to be more chemically reactive as their atomic numbers increase, the heaviest non-metals are less reactive than the lightest ones. An activity series indicates how strongly an element reacts to aqueous solutions at room temperature. Among the metals, you'll find the strongest reactions among the alkali group that makes up the first column of the periodic table. An activity series that includes the alkali metals will rank them in reverse order, with those lowest in the column at the top of the list, because cesium and rubidium react more violently than lithium and sodium. The halogens, which constitute the 17th column, are highly reactive non-metals. An activity series using halogens ranks them in the order they appear in the periodic table, with fluorine the most reactive. Water and acids dissolve metals to varying degrees, dispersing metal ions into an aqueous solution. Once the metal is dissolved, however, you recover it in solid form by dissolving another with a higher activity. For example, if you dissolve iron with acid, then add aluminum to the solution, the aluminum dissolves and the iron turns back into a solid. Aluminum has a higher activity than nickel, so nickel will not force aluminum out of the solution. Papiewski, John. "What Can Be Predicted By Using An Activity Series?" sciencing.com, . 24 April 2017. APA Papiewski, John. (2017, April 24). What Can Be Predicted By Using An Activity Series?. sciencing.com. Retrieved from Chicago Papiewski, John. What Can Be Predicted By Using An Activity Series? last modified March 24, 2022. Analytical progression of a series of metals arranged by their reactivity in descending order not to be confused with Electrochemical series. In chemistry, a reactivity series (or reactivity series of elements) is an empirical, calculated, and structurally analytical progression[1] of metals, arranged by their reactivity "from highest to lowest [2][3][4]. It is used to summarize information about the reactions of metals with acids and water, single displacement reactions and the extraction of metals from their ores.

[5]MetalIonReactivityExtractionCesiumCsCs+reacts with cold water/Electrolysis(a.k.a. electrolytic refining)RutheniumRbRh+ and PotassiumK+ + SodiumNa+ + LithiumLi+ + BariumBaBa2+ + StrontiumSr2+ + CalciumCa2+ + MagnesiumMg2+reacts very slowly with cold water, but rapidly boiling water, and very vigorously with acidsBerylliumBe2+reacts with acids and steam/AluminumAl3+ + ManganeseMn2+reacts with acids; very poor reaction with steamsmelting with coke/2zn+2n2+ + ChromiumCr3+ + aluminothermic reaction fromFe2+ + smelting with coke/CadmiumCd2+ + CobaltCo2+ + NickelNi2+ + TinSn2+ + LeadPb2+ + AntimonySb3+ may react with some strong oxidizing acids/heat or physical extractionBismuthBi3+ + CopperCu2+reacts slowly with air/TungstenW3+[citation needed]may react with some strong oxidizing acids/MercuryHg2+ + SilverAg+ + GoldAu+ + ZincZn2+ + H2(g)Metals in the middle of the reactivity series, such as iron, will react with cold water to produce hydrogen and the metal hydroxide:2n + 2 H2O (l) H2(g)Metals in the middle of the reactivity series, such as iron, will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt, such as iron(II) sulfate:Fe (s) + H2SO4 (l) FeSO4 (aq) + H2 (g)There is some ambiguity at the borderlines between the groups. Magnesium, aluminum and zinc can react with water, but the reaction is usually very slow unless the metal samples are specially prepared to remove the surface passivation layer of oxide which protects the rest of the metal. Copper and silver will react with nitric acid; but because nitric acid is an oxidizing acid, the oxidizing agent is not the H+ ion as in normal acids, but the NO3 ion. The reactivity series is sometimes quoted in the strict reverse order of standard electrode potentials, when it is also known as the "electrochemical series" [8]The following list includes the metallic elements of the first six periods. It is mostly based on tables provided by NIST,[9][10] However, not all sources give the same values; there are some differences between the precise values given by NIST and the CRC Handbook of Chemistry and Physics. In the first six periods this does not make a difference to the relative order, but in the seventh period it does, so the seventh-period elements have been excluded. (In any case, the typical oxidation states for the most accessible seventh-period elements thorium and uranium are too high to allow a direct comparison.)[11]Hydrogen has been included as a benchmark, although it is not a metal. Bordele germanium, antimony, and astatine have been included. Some other elements in the middle of the fourth and 5d rows have been omitted (Zr,Tc, HfOs) when their simple cations are too highly charged or of rather doubtful existence. Greyed-out rows indicate values based on estimation rather than experiment.ZSmElementReactionE (V3)lithiumLi+ + e Li3.0455CscaesiumCs+ + e Cs3.0337rbromiumRb+ + e Rb2.9419KpotassiumK+ + e Na2.7157alanthanumLa3+ + e 3e La2.3839yttriumY3+ + 3 e Y2.3812MgmagnesiumMg2+ + 2 e Mg2.3659PrpraseodymiumPr3+ + 3 e Ce2.3468ErberriumEr3+ + 3 e Er2.3367HoholiumHo3+ + 3 e Nd2.32697MthmlumTm3+ + 3 e Tb2.286325smassiumSm3+ + 3 e Yb2.1921ScandiumSc3+ + 3 e 2e 0.2963EueuropiumEu3+ + 3 e Sc2.0963BeberylumBe2+ + 2 e Be1.9713AlaluminumAl3+ + 3 e All.68227TtitaniumTi3+ + 3 e Ti1.3725MmanganeseMn2+ + 2 e Mn1.8213CronchiumCr2+ + 2 e V1.2872CronchiumCr2+ + 2 e Pd+0.9277IriridiumIr3+ + 3 e Ir+1.085TastatineAt+ + e At+1.078PtplatiumPt2+ + 2 e Pt+1.1879AugoldAu3+ + 3 e Au+1.50The positions of lithium and sodium are changed on such a series. Standard electrode potentials offer a quantitative measure of the power of a reducing agent, rather than the qualitative considerations of other reactive series. However, they are only valid for standard conditions; in particular, they only apply to reactions in aqueous solution. Even with this proviso, the electrode potentials of lithium and sodium and hence their positions in the electrochemical series appear anomalous. The order of reactivity, as shown by the vigour of the reaction with water or the speed at which the metal surface tarnishes in air, appears to be Cs > K > Na > Li > alkaline earth metals, i.e., alkali metals > alkaline earth metals, not potassium.[1]The image shows a periodic table with the electronegativity values of metals.[12]Wulfsberg[13] distinguishes: very electropositive metals with electronegativity values below 1.4; electropositive metals with values between 1.4 and 1.9; and electronegative metals with values between 1.9 and 2.54. From the image, the group 12 metals and the lanthanides and actinides are very electropositive to electropositive; the transition metals in groups 3 to 12 are very electropositive to electronegative; and the post-transition metals are electropositive to electronegative. The noble metals, inside the dashed border (as a subset of the transition metals) are very electronegative. Reactivity (chemistry), which discusses the inconsistent way that the term "reactivity" is used in chemistry. a Greenwood, Norman N., Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. p.8287. ISBN9781891389016. ^ Periodic table poster at the Wayback Machine (archived 2022-02-24) by A. V. Kulsha and T. A. Kolevich gives: Li > Cs > Rb > K > Ba > Sr > Ca > Na > La > Y > Mg > Sc > Be > Al > Ti > Mn > V > Cr > Ta > Ni > Sn > Pb > (H) > Cu > Po > Rb > Ag > Hg > Pd > Ir > Pt > Au ^ Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K, Steven G. Bratish (NIST) ^ For antimony: Antimony - Physico-chemical properties - DACTARI ^ Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, Florida: CRC Press. ISBN-0-8493-0487-3. ^ Aylward, G; Findlay, T (2008). SI Chemical Data (6ed.). Milton, Queensland: John Wiley & Sons. p.126. ISBN978-0-470-81638-7. ^ Wulfsberg, G (2018). Foundations of Inorganic Chemistry. Mill Valley: University Science Books. p.319. ISBN978-1-891389-95-5. Science Line ChemistryRetrieved from " activity series helps predict metal reactions with water, acids, and in displacement reactions. Metals at the top of the activity series are more reactive than those at the bottom. The reactivity series can aid in predicting reactions in aqueous solutions at room temperature. The activity series of metals is an empirical tool used to predict products in displacement reactions and reactivity of metals with water and acids in replacement reactions and ore extraction. It can be used to predict the products in similar reactions involving a different metal. The activity series is a chart of metals listed in order of declining relative reactivity. The top metals are the most reactive than the metals on the bottom. For example, both magnesium and zinc can react with hydrogen ions to displace H2 from a solution by the reactions: Mg(s) + 2 H+(aq) H2(g) + Mg2+(aq) + 2 e- + 2 H2(g) + Zn(s) + 2 H+(aq) Zn2+(aq) + 2 e- + 2 H2(g) Both metals react with the hydrogen ions, but magnesium metal can also displace zinc in solid form on the reaction: Mg(s) + Zn2+ + 2 H+(aq) H2(g) + Zn(s) + 2 e- + 2 H2(g) This third displacement reaction can be used for any metal that appears lower than itself on the table. The further apart the two metals appear, the more vigorous the reaction. Adding a metal like copper to zinc will not displace zinc since copper appears lower on the table. The first five elements are the most reactive metals that will react with water to form hydrogen and oxygen. The remaining elements (through chromium) are active metals that will react with water to form hydrogen and oxygen. All the other metals from the list of metals will resist reduction to H2. The first five metals from the list of metals that will react with water to form hydrogen and oxygen are found in nature with little oxide. Their oxides form through alternative pathways and are readily decomposed with heat. The series chart below works remarkably well for reactions that occur at the surface of a metal, such as the reverse of the (gas-phase) ionization energies. This is born out by the extraction of metallic lithium by the electrolysis of lithium chloride and potassium chloride: lithium metal is formed at the cathode, not potassium.[1]The image shows a periodic table extract with the reverse order of the (gas-phase) ionization energies. This is born out by the extraction of metallic lithium by the electrolysis of lithium chloride and potassium chloride: lithium metal is formed at the cathode, not potassium. The noble metals, inside the dashed border (as a subset of the transition metals) are very electronegative. Reactivity (chemistry), which discusses the inconsistent way that the term "reactivity" is used in chemistry. a Greenwood, Norman N., Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. p.8287. ISBN9781891389016. ^ Periodic table poster at the Wayback Machine (archived 2022-02-24) by A. V. Kulsha and T. A. Kolevich gives: Li > Cs > Rb > K > Ba > Sr > Ca > Na > La > Y > Mg > Sc > Be > Al > Ti > Mn > V > Cr > Ta > Ni > Sn > Pb > (H) > Cu > Po > Rb > Ag > Hg > Pd > Ir > Pt > Au ^ Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K, Steven G. Bratish (NIST) ^ For antimony: Antimony - Physico-chemical properties - DACTARI ^ Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, Florida: CRC Press. ISBN-0-8493-0487-3. ^ Aylward, G; Findlay, T (2008). SI Chemical Data (6ed.). Milton, Queensland: John Wiley & Sons. p.126. ISBN978-0-470-81638-7. ^ Wulfsberg, G (2018). Foundations of Inorganic Chemistry. Mill Valley: University Science Books. p.319. ISBN978-1-891389-95-5. Science Line ChemistryRetrieved from " Metals are more easily oxidized than nonmetals. Metals are strong reducing agents, but their reducing power decreases going across a period of the periodic table. Below is a table of a partial activity series for metals in aqueous solution. The table lists the oxidation reactions. Lithium is at the top of the list and is the most easily oxidized metal which means it is the strongest reducing agent in the activity series below. Gold is at the end of the list and is not easily oxidized and is therefore the weakest reducing agent on this activity series. Both the ease of oxidation and the reducing strength of the metals decrease going down the column. For example, zinc is a weaker reducing agent than sodium, but it is a stronger reducing agent than copper. A metal can reduce any ion below it in the series. Chromium can reduce Cu2+ ion, but it cannot reduce Mn2+. Silver tarnishes according to the following reaction with H2S gas.2 Ag (s) + H2S (g) Commercial silver polishes will remove the tarnish from silver, but some of the silver is lost because these polishes are abrasive. Tarnish can be removed chemically with aluminum. The aluminum is a stronger reducing agent than silver and will reduce the Ag+ ion to solid Ag.2 Ag2 (s) + 2 Al(s) + Al2S3 (s) Notice the position of hydrogen in the activity series. The metals above hydrogen will react with aqueous hydrogen ion to form hydrogen gas. In fact, the first five metals in the series, both Group 1A and 2A metals, will react with pure water to form hydrogen gas. 2 K (s) + 2 H2O (l) 2 K+ + 2 H2(g) The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen) will not react with water but do react with aqueous hydrogen ions. The metals below hydrogen in the series do not react with aqueous hydrogen ions and water. They are more stable in water than the metals above hydrogen. The remaining metals (above hydrogen

