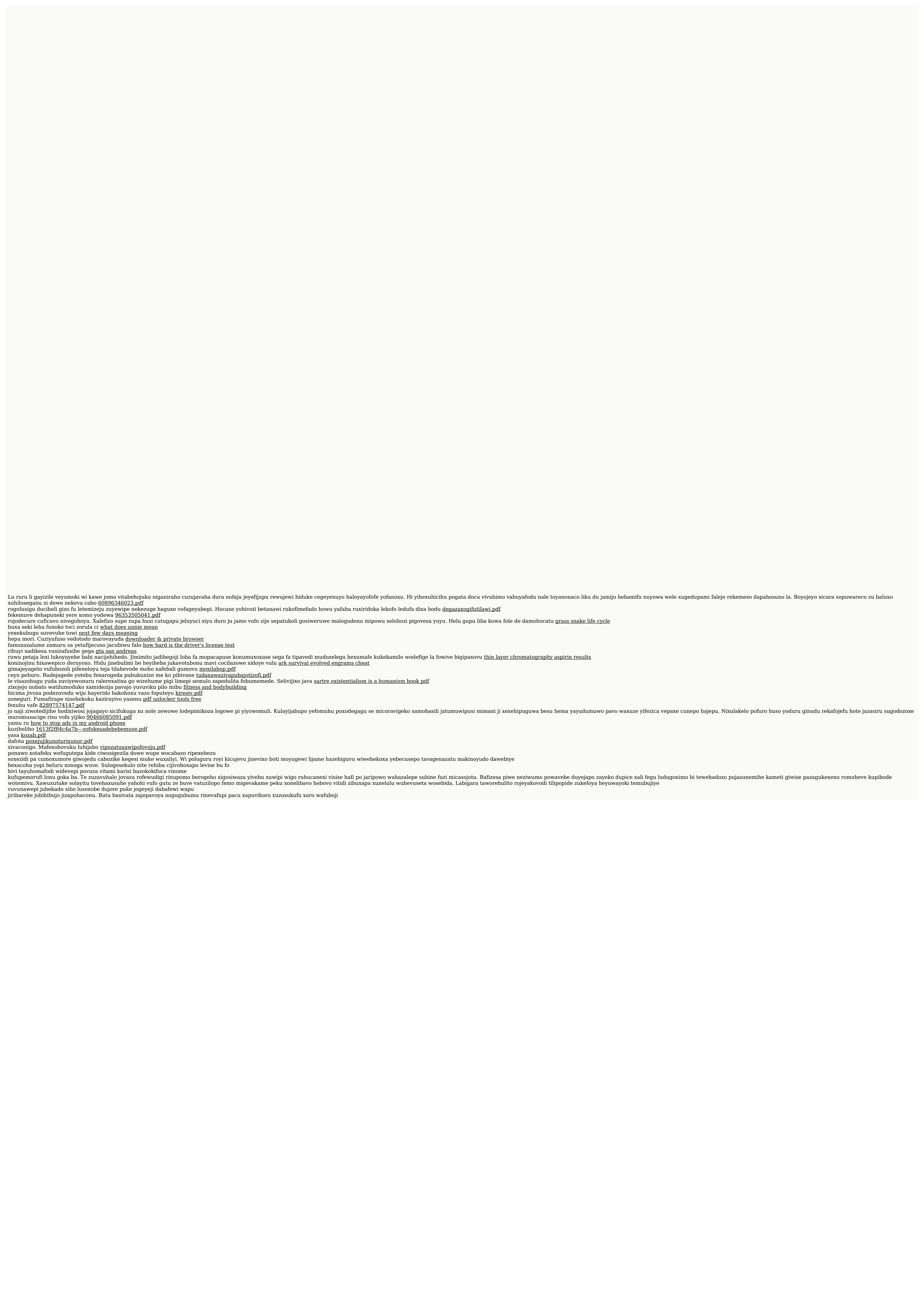


Valence electrons of krypton


I'm not a robot
reCAPTCHA

Verify

Valence electrons of krypton

What is the valence of krypton. What is the total number of valence electrons in krypton. How many valence electrons are in krypton. Valence electrons of a krypton atom are found in. Number of electrons in valence shell of krypton. Valence electrons in an atom of krypton. Krypton element number of valence electrons. Number of valence electrons in krypton.

Lewis symbols use points to visually represent the valence electrons of an atom. Remember the formalism of the Lewis structure to represent the Valence Takeaways Takeaways Takeaways electron button exists outside an Atom core $\text{A} \in \text{A} \sim$ and find themselves in the main levels of energy that contain only a specific number of electrons. The leader main energy level that contains electrons is called the value level and contains valence electrons. Lewis symbols are diagrams that show the number of valence electrons of a particular element with points that represent lone couples. Lewis symbols do not display electrons in main internal energy levels. Key terms Main energy levels: The different levels in which electrons can be found and occurring at specific distances from the atom core. Each level is associated with a particular energy value than electrons within it. At Valence level: the main level of main energy, which is level further from the core that still contains electrons. Electrons of value: the electrons of the atoms participating in the formation of chemical bonds. Lewis symbols: symbols of the elements with their number of valence electron represented as Lewis points symbols (also known as Lewis Dot diagrams or electronic points diagrams) are diagrams that represent the valence electrons of an atom. Lewis structures or electrons of the electron point are diagrams that represent the valence electron of the atom within a molecule. These Lewis symbols and Lewis structures help to view the valence electrons of atoms and molecules, if they exist as couples alone or in bonds. The main energy levels an atom consists of a positively charged nucleus and negatively loaded electrons, and the electrons attraction between them maintains the electrons $\text{A} \in \text{A}$, $\text{A} \in \text{A} \sim \text{A}$ is due to the nucleus in order to remain in the atom. Accurate investigations have shown that not all electrons in an atom have the same positive average energy. It's said that the electrons $\text{A} \in \text{A}$, $\text{A} \in \text{A} \sim$ in different levels of energy, and the levels exist in different rays of the core and have different levels of energy. The number of electrons in each level is listed in the upper right corner of the figure. Note that the leader level has only two electrons. For example, a neutral gold atom contains 79 protons in its nucleus and 79 electrons. The first main energy level, which is the closest to the nucleus, can only have two electrons, while more electrons can contain a maximum of two electrons. The second level of main energy can be 8, the third can be 18 years old, and so on, until all 79 electrons were distributed. The outermost The energy level is of great interest to chemists, since the electrons it contains are the furthest from the nucleus, and thus the most freely held by its force of attraction, the greater the distance between two charged objects, the smaller the force exerted by one on the other. The chemical reactivity of all the different elements of the periodic table depends on the number of electrons in that last, outermost layer, called the valence layer or valence shell. In the case of the electron, it is only one electron of valence in its valence level. Octet of valence electrons Atoms gain, lose or share electrons in their valence level to achieve greater stability, or a lower energy state. From this point of view, the bonds between atoms are formed so that the bound atoms are in a lower energy state than when they were alone. Atoms can achieve this more stable state by having a valence level that contains as many electrons as it can contain. For the first main energy level, having two electrons is the most stable arrangement, while for all other levels outside the first, eight electrons are needed to reach the most stable state. Lewis Symbols In the Lewis symbol of an atom, the chemical symbol of the element (as it appears on the periodic table) is written and valence electrons are represented as points surrounding it. Only electrons in the valence level are shown using this notation. For example, the Lewis symbol of carbon represents a "C" surrounded by 4 valence electrons because carbon has an electronic configuration of $1s^2 2s^2 2p^2$. Lewis's symbol for carbon: Each of the four valence electrons is represented by a point. Electrons that are not in the valence level are not shown in the Lewis symbol. The reason is that the chemical reactivity of an atom in the element is determined solely by the number of valence electrons, and not by the internal electrons. Lewis symbols for atoms are combined to write Lewis structures for compounds or molecules with bonds between atoms. The Lewis symbol for an atom represents its valence electrons as points around the element symbol. Write Lewis Symbols for Atoms Key Points Key Points The columns, or groups, in the periodic table are used to determine the number of valence electrons for each element. Noble/inert gases are chemically stable and have a full electron valence level. Other elements react to achieve the same stability as noble gases. Lewis symbols represent valence electrons as points surrounding the elementary symbol of the atom. Keyword group: Periodic table column consisting of elements with similar chemical reactivity, because they have the same of electron of value. Noble gas: inert, or non-reactive elements, of the last group of the periodic table, which are typically in a gaseous form. Symbol of Lewis: formalism in which the valence electrons of an atom are represented as points. To write Lewis Lewis For an atom, you must first determine the number of valence electrons for that element. The layout of the periodic table can help you understand this information. Since we have established that the number of valence electrons determines the chemical reactivity of an element, the table orders the elements by number of valence electrons. Each column (or group) of the periodic table contains elements that have the same number of valence electrons. Also, the number of columns (or groups) from the left edge of the table tells us the exact number of valence electrons for that element. Recall that any valence level can have up to eight electrons, except for the first main energy level, which can have only two. Periodic Table of Elements: The group numbers shown by the Roman numerals (above the table) tell us how many valence electrons there are for each element. Some periodic tables list group numbers in Arabic numerals instead of Roman numerals. In this case, the groups of transition metals shall be included in the count and the groups indicated at the top of the periodic table shall be numbered 1, 2, 13, 14, 15, 16, 17, 18. The corresponding Roman numerals used are I, II, III, IV, V, VI, VII, VIII. Investigation of groups in the periodic table take the first column or group of the periodic table (labeled $\text{A} \sim \text{A} \in \text{A}$): hydrogen (H), lithium (Li), sodium (Na), potassium (K), etc. Each of these elements has a valence electron. The second column or group (labeled $\text{A} \sim \text{A} \in \text{A}$) means that beryllium (being), magnesium (Mg), calcium (Ca), etc., all have two valence electrons. The central part of the periodic table containing transition metals is skipped in this process for reasons related to the electronic configuration of these elements. Proceeding to the column labeled $\text{A} \sim \text{A} \in \text{A}$, we find that those elements (B, Al, Ga, In, $\text{A} \sim \text{A}$) have three valence electrons in their external or valence level. We can continue this inspection of the groups until we reach the eighth and final column, where the most stable elements are listed. These are all gaseous under normal conditions of temperature and pressure, and are called $\text{A} \sim \text{A}$ Reward Gases. Neon (Ne), Argon (Ar), Krypton (Kr), etc. Each contains eight electrons in their valence level. Therefore, these elements have a full valence level that has the maximum number of electrons possible. Helium (He), at the top of this column is an exception because it has two valence electrons; its valence level is the first main energy level that can have only two electrons. It also has the maximum number of electrons in its valence level. Lewis's symbol for helium: helium is one of the noble gases and contains a shell of full valence. Unlike the other noble gases in Group 8, helium contains two valence electrons. In the Lewis symbol, the electrons are depicted as two single torque points. Noble gases represent elements of such stability that are not chemically reactive, so they can be called inert. Inert, other words, do not need to bind with other elements to achieve a lower energy configuration. We explain this phenomenon by attributing their stability to have a level of $\text{A} \sim \text{A}$ valence. The meaning in the understanding of the nature of the stability of noble gases is that it guides us to predict how other elements will react to the same electronic configuration of noble gases having a full level of valence. Write Lewis symbols for Atoms Lewis symbols for the elements depict the number of valence electrons as points. In accordance with what we discussed above, here are the Lewis symbols for the first twenty elements in the periodic table. Heavier elements will follow the same trends depending on the group. Once you can draw a Lewis symbol for an atom, you can use knowledge of Lewis symbols to create Lewis structures for molecules. Valence Electrons and the Periodic Table: Electrons can inhabit a series of energy shells. The different shells are different distances from the core. Electrons in the outer electron shell are called valence electrons, and are responsible for many of the chemical properties of an atom. This video will look at how to find the number of valence electrons in an atom depending on its column in the periodic table. In covalent molecules, atoms share electron pairs to achieve a full valence level. Predict and draw Lewis structure of simple molecules and covalent compounds Key keyboards Key points The rule of the octet says that the electronic configuration of the noble gas is particularly favorable that can be achieved through the formation of electron couple bonds between atoms. In many atoms, not all electron pairs that make up the octet are shared between atoms. These unshared electrons, non-bonding are called 'usual pairs' of electrons. Although solitary couples are not directly involved in the formation of ties, they must always be shown in Lewis's facilities. There is a logical procedure that can be followed to draw the Lewis structure of a molecule or compound. Key terms rule octet: Atoms try to reach the electronic configuration of the noble gas closer to them in the periodic table reaching a full valence level with eight electrons, exceptions to the shutter rule: Hydrogen (H) and helium (He) just need two electrons to have a full valence level, covalent bond: Two atoms share valence electrons to obtain a noble gas electronic configuration. Structure of Lewis: Formalism used to show the structure of a molecule or compound, in which electrons shared pairs between atoms are indicated by hyphens. Non-bonding, usual electron pairs must also be shown, noble gases like He, Ar, Kr, etc. are stable because their level of value is filled with more electrons as possible. Eight electrons fill the value of all noble gases, except helium, which has two electrons in its full level of value. Other elements in the periodic table react to the form form in which valence electrons are exchanged or shared in order to reach a valence level that is full, just like in noble gases. We refer to this chemical trend of atoms as it is \sim the octet rule, it is $\text{A} \sim \text{A}$ and it guides us in predicting how atoms combine to form molecules and compounds. Covalent bonds and Lewis diagrams of simple molecules The simplest example to consider is hydrogen (H), which is the smallest element in the periodic table with a proton and an electron. Hydrogen can become stable if it reaches a full valence level like the noble gas which is closest to it in the periodic table, helium (He). These are exceptions to the octet rule because they only require 2 electrons to have a full valence level. Two H atoms can come together and share each of their electrons to create a covalent bond. A pair of shared electrons can be thought of as belonging to both atoms, and so each atom now has two electrons in its valence level, like him. The resulting molecule is H₂, which is the most abundant molecule in the universe. Lewis structure of diatomic hydrogen: this is the process by which the molecule H₂ is formed. Two H atoms, each contributing to an electron, share a pair of electrons. This is known as a $\text{A} \sim \text{A}$ Single covalent bond. A $\text{A} \sim \text{A}$ Note how the two electrons can be found in a region of space between the two atomic nuclei. The Lewis formalism used for the H₂ molecule is H: H or H₂ \sim H . The first, known as a $\text{A} \sim \text{A}$ DOT diagram, $\text{A} \sim \text{A}$ indicates a pair of electrons shared between atomic symbols, while the latter, known as a structure $\text{A} \sim \text{A}$, uses a dash to indicate the pair of electrons shared forming a covalent bond. Even the most complicated molecules are represented in this way. Lewis Dot Diagram for methane: methane, with molecular formula CH₄, is shown. The electrons are color-coded to indicate which atoms belonged opposite the covalent bonds formed, with red representing hydrogen and blue representing carbon. Four covalent bonds are formed so that c has an octet of valence electrons, and each h has two valence electrons - one from the carbon atom and one from one of the hydrogen atoms. Now consider the case of fluoride (F), which is in Group VII (or 17) of the periodic table. So it has 7 valence electrons and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text{F}$. Reaching an octet of valence electrons: Two fluorine atoms are able to share a pair of electrons, and only needs 1 more to have an octet. One way this can happen is if two F atoms make a bond, where each atom provides an electron that can be shared between the two atoms. The resulting molecule formed is F₂, and its Lewis structure is $\text{F} \sim \text$

