
	

https://xitowasojip.pofezaf.com/893120257302202812462630984101539815929579?vixedukawatakafivewosedivitakibonozimabevabuvolafudakefefotofitokekuxitodonixapezilogofa=fukoriraketefekugawekefajodevopetawiludazigakisofukutukatomakosonalagezukijuvogurisuvizizidovesaveruriwimukarovatewivovoburatibijukajemazepijasozolupaxanifabikaxuwelodoburodetokakogosabekudogopurojeve&utm_term=version+control+with+git+3rd+edition&mimedavalasonebabojozekikigibenivugomudimimalorizatotagipugidofenuzoxawuvutosaketof=ruveposokajijijusidevuzolavozajemejupamujatutaguranunonapejeponixaradinefolojixekudegopipulizikunasexizutidorotanezivepubonatedixafoxifinipunejanun

Version	control	with	git	3rd	edition

Do	not	be	intimidated	by	the	long	hex	numbers.	Running	the	git	status	command	reveals	this	in-between	state	of	index.html:	$	git	status	On	branch	main	No	commits	yet	Changes	to	be	committed:	(use	"git	rm	--cached	..."	to	unstage)	new	file:	index.html	The	command	reports	that	the	new	file	index.html	will	be	added	to	the	repository	during	the	next
commit.	Git	then	restores	the	state	of	the	project	to	the	most	recent	moment	when	the	snapshot	of	the	specified	branch	was	created.	The	git	log	command	shows	the	commit	logs	for	how	changes	for	each	commit	are	included	in	the	repo	history.	FigureÂ	1-4	explains	the	method	we	just	discussed.	Now	that	you	have	configured	your	identity,	you	are
ready	to	start	working	with	a	repository.	(The	default	in	this	case	would	list	only	the	most	recent	commit.)	The	name	main	is	the	default	branch	name.	This	is	very	helpful	when	you	need	to	traverse	the	repo	history	to	track	down	a	specific	change	or	quickly	identify	changes	of	a	commit	without	having	to	dig	deeper	into	the	change	details.	In	Git,	the
concept	of	branching	is	considered	lightweight	and	inexpensive	because	a	branch	in	Git	is	just	a	pointer	to	the	latest	commit	in	a	series	of	linked	commits.	The	git	log	command	yields	a	sequential	history	of	the	individual	commits	within	the	repository:	$	git	log	commit	521edbe1dd2ec9c6f959c504d12615a751b5218f	(HEAD	->	main)	Author:	Jon
Loeliger	Date:	Mon	Jul	4	12:01:54	2022	+0200	Convert	to	HTML	commit	c149e12e89a9c035b9240e057b592ebfc9c88ea4	Author:	Jon	Loeliger	Date:	Mon	Jul	4	11:58:36	2022	+0200	Initial	contents	of	my_website	In	the	preceding	output,	the	git	log	command	prints	out	detailed	log	information	for	every	commit	in	the	repository.	FigureÂ	1-2	depicts
what	we	have	just	explained:	.	For	every	branch	you	create,	Git	keeps	track	of	the	series	of	commits	for	that	branch.	When	you	make	changes	to	existing	files	or	add	new	files	to	your	project,	Git	records	those	changes	in	the	hidden	.git	folder.	Git	aliases	allow	you	to	substitute	common	but	complex	git	commands	that	you	type	frequently	with	simple
and	easy-to-remember	aliases.	Git	considers	~/my_website	to	be	the	working	directory.	Through	a	series	of	step-by-step	tutorials,	this	practical	guide	quickly	takes	you	from	Git	fundamentals	to	advanced	techniques,	and	provides	friendly	yet	rigorous	advice	for	navigating	Git's	many	functions.	Up	to	this	point,	you	have	only	created	a	new	Git
repository.	This	allows	you	to	work	in	a	disconnected	environment	since	Git	does	not	need	a	constant	connection	to	the	Git	server	to	version-control	your	changes.	Here	we	provide	the	option	-b	followed	by	a	default	branch	named	main:	$	git	init	-b	main	Initialized	empty	Git	repository	in	../my_website/.git/	If	you	prefer	to	initialize	an	empty	Git
repository	first	and	then	add	files	to	it,	you	can	do	so	by	running	the	following	commands:	$	git	init	-b	main	~/my_website	Initialized	empty	Git	repository	in	../my_website/.git/	$	cd	~/my_website	$	echo	'My	awesome	website!'	>	index.html	You	can	initialize	a	completely	empty	directory	or	an	existing	directory	full	of	files.	We	elaborate	on	this	in
â€œContent-Addressable	Databaseâ€​.	Depending	on	your	installation,	the	system	settings	file	might	be	somewhere	else	(perhaps	in	/usr/local/etc	gitconfig)	or	may	be	absent	entirely.	If	you	want	to	see	more	detail	about	a	particular	commit,	use	the	git	show	command	with	a	commit	ID	number:	$	git	show
c149e12e89a9c035b9240e057b592ebfc9c88ea4	commit	c149e12e89a9c035b9240e057b592ebfc9c88ea4	Author:	Jon	Loeliger	Date:	Mon	Jul	4	11:58:36	2022	+0200	Initial	contents	of	my_website	diff	--git	a/index.html	b/index.html	new	file	mode	100644	index	0000000..6331c71	---	/dev/null	+++	b/index.html	@@	-0,0	+1	@@	+My	awesome	website!	If
you	run	git	show	without	an	explicit	commit	number,	it	simply	shows	the	details	of	the	HEAD	commit,	in	our	case,	the	most	recent	one.	We	will	start	simple	and	work	our	way	toward	techniques	for	working	with	a	shared	repository	on	a	Git	server.	Each	command	sported	a	hyphenated	name,	such	as	git-commit	and	git-log.	Once	you	commit	the	file,	it
becomes	part	of	the	repository	commit	history;	for	brevity,	we	will	refer	to	this	as	the	repo	history.	O’Reilly	members	experience	books,	live	events,	courses	curated	by	job	role,	and	more	from	O’Reilly	and	nearly	200	top	publishers.	However,	modern	Git	installations	no	longer	support	the	hyphenated	command	forms	and	instead	use	a	single	git
executable	with	a	subcommand.	Git	GUI	tools	act	as	a	frontend	for	the	Git	command	line,	and	some	tools	have	extensions	that	integrate	with	popular	Git	hosting	platforms.	This	methodology,	called	branching,	is	a	very	common	practice	and	ensures	the	integrity	of	the	main	development	line,	preventiing	any	accidental	changes	that	may	break	it.	(This
is	consistent	with	the	GNU	long	options	extension.)	Some	options	exist	in	only	one	form.	The	git	init	command	creates	a	hidden	directory	called	.git	at	the	root	level	of	your	project.	You'll	learn	how	to	work	with	everything	from	small	to	very	large	projects	with	speed	and	efficiency.In	this	third	edition,	authors	Prem	Kumar	Ponuthorai	and	Jon	Loeliger
break	down	Git	concepts	using	a	modular	approach.	These	topics	are	the	building	blocks	of	Git	and	will	help	you	understand	the	intermediate	and	advanced	techniques	for	managing	a	Git	repository	as	part	of	your	daily	work.	These	settings	have	the	lowest	precedence.	You	can	save	your	identity	in	a	configuration	file	using	the	git	config	command:	$
git	config	user.name	"Jon	Loeliger"	$	git	config	user.email	"jdl@example.com"	If	you	decide	not	to	include	your	identity	in	a	configuration	file,	you	will	have	to	specify	your	identity	for	every	git	commit	subcommand	by	appending	the	argument	--author	at	the	end	of	the	command:	$	git	commit	-m	"log	message"	--author="Jon	Loeliger	"	Keep	in	mind
that	this	is	the	hard	way,	and	it	can	quickly	become	tedious.	A	complete	list	of	all	git	commands	is	online.	As	per	convention,	the	first	revision	commit,	9da581d910c9c4ac93557ca4859e767f5caf5169,	is	the	earlier	of	the	content	for	index.html,	and	the	second	revision	commit,	ec232cddfb94e0dfd5b5855af8ded7f5eb5c90d6,	is	the	latest	content	of
index.html.	For	example,	Git	does	not	automatically	sync	changes	from	your	local	repository	to	the	remote	repository,	nor	does	it	automatically	save	a	snapshot	of	a	revision	to	your	local	repo	history.	Git	terms	these	collections	of	linked	snapshots	repository	commit	history,	or	repo	history	for	short.	We	will	discuss	the	Local	History	and	Index	in
Chapters	4	and	5,	respectively.	Git	is	definitive	Definitive	means	the	git	commands	are	explicit.	When	we	use	the	command	git	show-graph,	it	will	give	us	the	same	output	we	got	when	we	typed	that	long	git	log	command	with	all	those	options.	For	example,	you	can	set	a	value	for	the	editor	to	be	used	when	composing	a	commit	log	message.	Start	by
creating	a	new	empty	repository	on	your	local	development	machine.	Some	of	the	settings	represent	personal	preferences	(e.g.,	should	a	color.pager	be	used?),	others	are	important	for	a	repository	to	function	correctly	(e.g.,	core	repositoryformatversion),	and	still	others	tweak	git	command	behavior	a	bit	(e.g.,	gc.auto).	Letâ€™s	assume	youâ€™re
starting	from	scratch	and	you	are	going	to	add	content	for	your	project	in	the	local	directory	~/my_website,	which	you	place	in	a	Git	repository.	It	is	designed	to	put	full	control	of	your	repository	into	your	hands.	FigureÂ	1-3	will	help	you	visualize	all	the	steps	you	just	learned.	Imagine	how	disruptive,	confusing,	and	time-consuming	it	would	be	to
update	the	repository	each	time	you	add,	remove,	or	change	a	file.	This	distinction	means	Git	is	fast	and	scalable,	has	a	rich	collection	of	command	sets	that	provide	access	to	both	high-level	and	low-level	operations,	and	is	optimized	for	local	operations.	As	you	can	see	from	the	usage	hint,	a	small	handful	of	options	apply	to	git.	By	focusing	on	which
commands	are	important	for	your	day-to-day	work,	we	can	simplify	and	learn	them	in	more	depth.	You	have	the	option	to	install	and	configure	your	own	Git	server,	or	you	can	forgo	the	overhead	and	opt	to	host	your	Git	repositories	on	reliable	third-party	hosting	sites	such	as	GitHub,	GitLab,	and	Bitbucket.	Upon	installation,	type	git	without	any
arguments.	At	this	point	you	have	only	two	commits	in	your	repo	history,	which	makes	it	easier	to	read	the	output.	Get	Version	Control	with	Git,	3rd	Edition	now	with	the	O’Reilly	learning	platform.	We	recommend	that	you	strive	to	group	logical	change	batches	before	making	a	commit.	Although	the	file	index.html	exists	in	the	directory	~/my_website,
to	Git,	this	is	the	working	directory,	a	representation	of	a	scratch	pad	or	directory	where	you	frequently	alter	your	files.	When	you	are	working	with	Git,	a	typical	setup	includes	a	Git	server	and	Git	clients.	Every	action	requires	your	explicit	command	or	instruction	to	tell	Git	what	is	required,	including	adding	new	commits,	fixing	existing	commits,
pushing	changes	from	your	local	repository	to	the	remote	repository,	and	even	retrieving	new	changes	from	the	remote	repository.	You'll	start	with	the	basics	and	fundamental	philosophy	of	Git,	followed	by	intermediate	commands	to	help	you	efficiently	supplement	your	daily	development	workflow.	Many	of	these	differences	allow	for	different
filesystem	characteristics.	With	the	git	add	command,	Git	understands	that	you	intend	to	include	the	final	iteration	of	the	modification	on	index.html	as	a	revision	in	the	repository.	For	repositories	with	many	commit	histories,	this	standard	view	may	not	help	you	traverse	a	long	list	of	detailed	commit	information	with	ease;	in	such	situations	you	can
provide	the	--oneline	switch	to	list	a	summarized	commit	ID	number	along	with	the	commit	message:	$	git	log	--oneline	521edbe	(HEAD	->	main)	Convert	to	HTML	c149e12	Initial	contents	of	my_website	The	commit	log	entries	are	listed,	in	order,	from	most	recent	to	oldest1	(the	original	file);	each	entry	shows	the	commit	authorâ€™s	name	and	email
address,	the	date	of	the	commit,	the	log	message	for	the	change,	and	the	internal	identification	number	of	the	commit.	Your	local	repository	will	have	the	resources	and	the	snapshots	of	the	revision	changes	made	on	those	resources	all	in	one	location.	All	revision	information	along	with	supporting	metadata	and	Git	extensions	are	stored	in	this	top-
level,	hidden	.git	folder.	However,	for	specifications	set	on	the	command	line,	Git	will	override	the	values	supplied	in	the	configuration	file	and	environment	variable.	In	other	words,	this	Git	repository	is	empty.	We	will	discuss	branches	and	revisit	the	git	show-branch	command	in	more	detail	in	ChapterÂ	3.	Since	Git	offers	many	novelties,	keep	in
mind	that	the	concepts	and	practices	of	other	version	control	systems	may	work	differently	or	may	not	be	applicable	at	all	in	Git.	To	ensure	that	your	local	working	copy	of	the	repository	is	in	sync	with	changes	from	the	remote	Git	repository,	you	will	need	to	run	a	combination	of	these	commands:	git	fetch,	git	merge,	git	pull,	or	git	push.	We	dive	in
deeper	on	this	topic	in	Chapters	4	and	8.	Git	clients	Git	clients	interact	with	your	local	repositories,	and	you	are	able	to	interact	with	Git	clients	via	the	Git	command	line	or	the	Git	GUI	tools.	Now	that	you	have	more	commits	in	the	repo	history,	you	can	inspect	them	in	a	variety	of	ways.	The	git	commands	understand	both	â€œshortâ€​	and	â€œlongâ€​
options.	If	you	need	to	remove	a	setting	from	the	configuration	files,	use	the	--unset	option	together	with	the	correct	configuration	files	flag:	$	git	config	--unset	--global	user.email	Git	provides	you	with	many	configuration	options	and	environment	variables	that	frequently	exist	for	the	same	purpose.	We	highly	recommend	that	you	take	time	to	grasp
the	important	concepts	explained	here.	There	are	a	plethora	of	tools	available	at	your	disposal.	This	also	saves	you	the	hassle	of	remembering	or	typing	out	those	long	commands,	and	it	saves	you	from	the	frustration	of	running	into	typos:	$	git	config	--global	alias.show-graph	\	'log	--graph	--abbrev-commit	--pretty=oneline'	In	this	example,	we	created
the	show-graph	alias	and	made	it	available	for	use	in	any	repository	we	create.	Like	other	tools,	Git	supports	a	hierarchy	of	configuration	files.	Finally,	you'll	learn	advanced	Git	commands	and	concepts	to	understand	how	Git	works	under	the	hood.Learn	how	to	use	Git	for	real-world	development	scenariosGain	insight	into	Git's	common	use	cases,
initial	tasks,	and	basic	functionsUse	the	system	for	distributed	version	controlLearn	how	to	manage	merges,	conflicts,	patches,	and	diffsApply	advanced	techniques	such	as	rebasing,	hooks,	and	ways	to	handle	submodules	Simply	put,	Git	is	a	content	tracker.	When	you	decide	to	merge	the	changes	from	any	branch	into	the	main	development	line,	Git	is
able	to	combine	those	series	of	commits	by	applying	techniques	that	we	will	discuss	in	ChapterÂ	6.	As	a	natural	consequence,	you	are	able	to	work	on	large,	complex	projects	across	distributed	teams	without	compromising	efficiency	and	performance	for	version	control	operations.	However,	the	distinct	feature	that	makes	Git	unique	among	the	variety
of	tools	available	today	is	that	it	is	a	distributed	version	control	system.	If	you	prefer	to	provide	a	detailed	log	message	via	an	interactive	editor	session,	you	can	do	so	as	well.	The	argument	.,	the	single	period	or	dot	in	Unix	parlance,	is	shorthand	for	the	current	directory.	Git	is	designed	to	bolster	nonlinear	development	Git	allows	you	to	ideate	and
experiment	with	various	implementations	of	features	for	viable	solutions	to	your	project	by	enabling	you	to	diverge	and	work	in	parallel	along	the	main,	stable	codebase	of	your	project.	You	can	create	a	repository	in	two	ways:	either	create	a	repository	from	scratch	and	populate	it	with	some	content,	or	work	with	an	existing	repository	by	cloning	it
from	a	remote	Git	server.	We	like	to	refer	to	this	as	â€œThinking	in	Gitâ€​:	Git	stores	revision	changes	as	snapshots	The	very	first	concept	to	unlearn	is	the	way	Git	stores	multiple	revisions	of	a	file	that	you	are	working	on.	If	for	some	reason	you	were	to	enter	the	sync	subcommand	on	the	command	line,	you	might	get	this	confusing	output:	$	git	sync
git:	'sync'	is	not	a	git	command.	This	directory	contains	the	current	version	of	files	for	your	website.	Git	waits	for	you	to	provide	instructions	on	what	to	do	and	when	to	do	it.	Unlike	other	version	control	systems,	Git	does	not	track	revision	changes	as	a	series	of	modifications,	commonly	known	as	deltas;	instead,	it	takes	a	snapshot	of	changes	made	to
the	state	of	your	repository	at	a	specific	point	in	time.	Understanding	these	distinct	traits	of	Git	enables	you	to	effortlessly	switch	from	a	centralized	version	control	mindset	to	a	distributed	version	control	mentality.	The	configuration	files	are	used	to	store	preferences	and	settings	used	by	multiple	git	commands.	The	Git	server	and	clients	work	as
follows:	Git	server	A	Git	server	enables	you	to	collaborate	more	easily	because	it	ensures	the	availability	of	a	central	and	reliable	source	of	truth	for	the	repositories	you	will	be	working	on.	See	'git	--help'.	Some	Git	GUI	tools	are	fancy	and	extensible	via	a	plug-in	model	that	provides	you	the	option	to	connect	and	leverage	features	made	available	on
popular	third-party	Git	hosting	sites.	Track,	branch,	merge,	and	manage	code	revisions	with	Git,	the	free	and	open	source	distributed	version	control	system.	You	should	see	output	similar	to	the	following:	$	git	--version	git	version	2.37.0	If	you	do	not	have	Git	installed	on	your	machine,	please	refer	to	AppendixÂ	B	to	learn	how	you	can	install	Git
according	to	your	operating	system	platform	before	continuing	with	the	next	section.	/etc/gitconfig	System-wide	configuration	settings	manipulated	with	the	--system	option	if	you	have	proper	Unix	file	write	permissions	on	the	gitconfig	file.	*]:mb-4	[&_ul]:list-disc	[&_ul]:pl-[2rem]	[&_ol]:list-decimal	[&_ol]:pl-[2rem]>Track,	branch,	merge,	and	manage
code	revisions	with	Git,	the	free	and	open	source	distributed	version	control	system.	A	more	extensive	(yet	still	incomplete)	list	can	be	found	on	the	git	config	manual	page.	It	is	because	the	content	to	be	committed	may	be	specified	in	more	than	one	way	in	Git.	These	foundational	concepts	will	also	help	you	ramp	up	your	learning	when	we	break	down
the	inner	workings	of	Git	in	chapters	grouped	in	PartÂ	II,	â€œFundamentals	of	Gitâ€​,	PartÂ	III,	â€œIntermediate	Skillsâ€​,	and	PartÂ	IV,	â€œAdvanced	Skillsâ€​.	FigureÂ	1-6	represents	the	Git	configuration	files	hierarchy	in	decreasing	precedence:	.git/config	Repository-specific	configuration	settings	manipulated	with	the	--file	option	or	by	default.	1
Strictly	speaking,	they	are	not	in	chronological	order	but	rather	are	a	topological	sort	of	the	commits.	You	will	need	to	recall	the	commit	ID	numbers	and	run	the	git	diff	command:	$	git	diff	c149e12e89a9c035b9240e057b592ebfc9c88ea4	\	521edbe1dd2ec9c6f959c504d12615a751b5218f	diff	--git	a/index.html	b/index.html	index	6331c71..8cfcb90
100644	---	a/index.html	+++	b/index.html	@@	-1	+1,5	@@	-My	awesome	website!	+	+	My	website	is	awesome!	+	+	The	output	resembles	what	the	git	diff	command	produces.	After	you	commit	the	index.html	file	into	the	repository,	run	git	status	to	get	an	update	on	the	current	state	of	your	repository.	If	neither	is	configured,	it	falls	back	to	using	the
vi	editor.	In	short,	you	need	to	be	intentional	with	your	actions.	The	most	similar	command	is	svn	git	sync	is	not	a	valid	git	subcommand.	At	a	bare	minimum,	Git	requires	your	name	and	email	address	before	you	make	your	first	commit	in	your	repository.	An	example	would	be	a	tool	with	an	option	called	sync,	which	masks	the	underlying	chaining	of
two	or	more	git	commands	to	achieve	a	desired	outcome.	Based	on	the	configuration,	invocation	follows	these	steps:	GIT_EDITOR	environment	variable	core.editor	configuration	option	VISUAL	environment	variable	EDITOR	environment	variable	The	vi	command	There	are	more	than	a	few	hundred	configuration	parameters.	For	example,	the	git
commit	command	treats	the	following	examples	equivalently:	$	git	commit	-m	"Fix	a	typo."	$	git	commit	--message="Fix	a	typo."	The	short	form,	-m,	uses	one	hyphen,	whereas	the	long	form,	--message,	uses	two.	With	the	repo	history	in	place	from	the	addition	of	commits,	you	can	now	see	the	differences	between	the	two	revisions	of	index.html.	We
will	model	a	typical	situation	by	creating	a	repository	for	your	personal	website.	Git	configuration	files	are	all	simple	text	files	in	the	style	of	.ini	files.	A	fully	qualified	git	commit	command	should	supply	a	terse	and	meaningful	log	message	using	active	language	to	denote	the	change	that	is	being	introduced	by	the	commit.	In	ChapterÂ	4	we	will	dive
deeper	into	this	concept.	You	can	switch	between	branches	locally.	~/.gitconfig	User-specific	configuration	settings	manipulated	with	the	--global	option.	In	Git	terminology	this	is	known	as	a	commit.	Instead,	multiple	provisional	and	related	steps,	such	as	an	add,	can	be	batched,	thereby	keeping	the	repository	in	a	stable,	consistent	state.	We	will
discuss	commits	in	more	detail	in	ChapterÂ	4.	This	is	known	as	a	local	repository,	or	a	clone	of	the	remote	repository	on	a	Git	server.	Letâ€™s	commit	the	staged	index.html	file	for	your	website:	$	git	commit	-m	"Initial	contents	of	my_website"	[main	(root-commit)	c149e12]	initial	contents	of	my_website	1	file	changed,	1	insertion(+)	create	mode
100644	index.html	The	details	of	the	author	who	is	making	the	commit	are	retrieved	from	the	Git	configuration	we	set	up	earlier.	$	cat	index.html	My	website	is	awesome!	$	git	commit	index.html	-m	'Convert	to	HTML'	[main	521edbe]	Convert	to	HTML	1	file	changed,	5	insertions(+),	1	deletion(-)	If	you	are	already	familiar	with	Git,	you	may	be
wondering	why	we	skipped	the	git	add	index.html	step	before	we	committed	the	file.	In	the	code	example,	we	supplied	the	-m	argument	to	be	able	to	provide	the	log	message	directly	on	the	command	line.	Convert	index.html	into	a	proper	HTML	file,	and	commit	the	alteration	to	it:	$	cd	~/my_website	#	edit	the	index.html	file.	In	our	example,	running
git	status	should	indicate	that	there	are	no	outstanding	changes	to	be	committed:	$	git	status	On	branch	main	nothing	to	commit,	working	tree	clean	Git	also	tells	you	that	your	working	directory	is	clean,	which	means	the	working	directory	has	no	new	or	modified	files	that	differ	from	what	is	in	the	repository.	You	can	also	write	to	this	file	with	the	--
local	option.	You	can	create	a	commit	summary	and	detailed	message	for	the	summary	by	using	the	-m	option	multiple	times:	$	git	commit	-m	"Summary"	-m	"Detail	of	Summary"	Finally,	you	can	separate	options	from	a	list	of	arguments	via	the	bare	double	dash	convention.	Think	of	this	as	capturing	a	moment	in	time,	as	through	a	photograph.	When
you	have	finalized	changes	to	the	files	and	want	to	deposit	those	changes	into	the	Git	repository,	you	need	to	explicitly	do	so	by	using	the	git	add	file	command:	$	git	add	index.html	Although	you	can	let	Git	add	all	the	files	in	the	directory	and	all	subdirectories	using	the	git	add	.	Git	provides	many	shorter,	easier	ways	to	run	similar	commands	so	that
you	can	avoid	large,	complicated	commit	IDs.	Usually	the	first	seven	characters	of	the	hex	numbers,	as	shown	in	the	git	log	--oneline	example	earlier,	are	sufficient.	As	convenient	as	it	may	be	to	learn	Git	via	a	GUI	tool,	we	will	be	focusing	on	the	Git	command-line	tool	for	examples	and	code	discussions,	since	this	builds	a	good	foundational	knowledge
that	will	lead	to	Git	dexterity.	However,	so	far	Git	has	merely	staged	the	file,	an	interim	step	before	taking	a	snapshot	via	a	commit.	Git	is	enhanced	for	local	development	In	Git,	you	work	on	a	copy	of	the	repository	on	your	local	development	machine.	For	example,	the	option	--version	affects	the	git	command	and	produces	a	version	number:	$	git	--
version	git	version	2.37.0	In	contrast,	--amend	is	an	example	of	an	option	specific	to	the	git	subcommand	commit:	$	git	commit	--amend	Some	invocations	require	both	forms	of	options	(here,	the	extra	spaces	in	the	command	line	merely	serve	to	visually	separate	the	subcommand	from	the	base	command	and	are	not	required):	$	git	--git-dir=project.git
repack	-d	For	convenience,	documentation	for	each	git	subcommand	is	available	using	git	help	subcommand,	git	--help	subcommand,	git	subcommand	--help,	or	man	git-subcommand.	The	commit	ID	number	is	explained	in	â€œContent-Addressable	Databaseâ€​.	For	the	purpose	of	learning,	we	will	reference	two	virtual	directories	that	we	call	Local
History	and	Index	to	illustrate	the	concept	of	initializing	a	new	Git	repository.	The	Git	client	tools	mostly	work	on	the	local	copy	of	your	repository.	When	you	install	and	configure	a	Git	client,	you	will	be	able	to	access	the	remote	repositories,	work	on	a	local	copy	of	the	repository,	and	push	changes	back	to	the	Git	server.	Whether	you	are	creating	a
new	repository	or	working	with	an	existing	repository,	there	are	basic	prerequisite	configurations	that	you	need	to	complete	after	installing	Git	on	your	local	development	machine.	FigureÂ	1-1	shows	how	the	components	work	together.	If	you	are	new	to	Git,	we	recommend	starting	out	using	the	Git	command	line;	familiarize	yourself	with	the	common
subset	of	git	commands	required	for	your	day-to-day	operations	and	then	progress	to	a	Git	GUI	tool	of	your	choice.	Detailed	explanations	of	the	various	commit	methods	are	also	explained	in	the	git	commit	--help	manual	pages.	Next,	letâ€™s	make	a	few	modifications	to	index.html	and	create	a	repo	history	within	the	repository.	The	identity	you	supply
then	shows	as	the	commit	author,	baked	in	with	other	snapshot	metadata.	We	will	not	bore	you	with	them	but	will	point	out	important	ones	as	we	go	along.	For	a	complete	list	of	git	subcommands,	type	git	help	--all.	In	this	chapter	you	will	learn	the	fundamental	principles	of	Git,	its	characteristics,	and	basic	git	commands,	and	youâ€™ll	receive	some
quick	guidance	on	creating	and	adding	changes	to	a	repository.	Some	git	commands	show	the	sequence	of	individual	commits,	others	show	the	summary	of	an	individual	commit,	and	still	others	show	the	full	details	of	any	commit	you	specify	in	the	repository.	As	such,	there	are	many	ways	to	do	the	same	thing.	Git	separates	the	add	and	commit	steps
to	avoid	volatility	while	providing	flexibility	and	granularity	in	how	you	record	changes.	You	can’t	perform	that	action	at	this	time.	Gitâ€™s	command-line	interface	is	simple	to	use.	The	reason	for	this	approach	is	that	to	some	extent,	Git	GUI	tools	tend	to	provide	terminologies	that	represent	a	desired	outcome	that	may	not	be	part	of	Gitâ€™s	standard
commands.	See	'git	help	git'	for	an	overview	of	the	system.	Most	options,	shown	as	[ARGS]	in	the	hint,	apply	to	specific	subcommands.	This	is	called	an	atomic	commit	and	will	help	you	in	situations	where	youâ€™ll	need	to	do	some	advanced	Git	operations	in	later	chapters.	Given	that	notion,	Git	shares	common	principles	of	most	version	control
systems.	This	is	akin	to	setting	up	the	correct	date,	time	zone,	and	language	on	a	new	camera	before	taking	your	first	snapshot.	The	difference	between	git	add	and	git	commit	is	much	like	you	organizing	a	group	of	schoolchildren	in	a	preferred	order	to	get	the	perfect	classroom	photograph:	git	add	does	the	organizing,	whereas	git	commit	takes	the
snapshot.	A	Git	server	is	also	where	your	remote	Git	repositories	are	stored;	as	common	practice	goes,	the	repository	has	the	most	up-to-date	and	stable	source	of	your	projects.	If	you	want	to	see	concise,	one-line	summaries	for	the	current	development	branch	without	supplying	additional	filter	options	to	the	git	log	--oneline	command,	an	alternative
approach	is	to	use	the	git	show-branch	command:	$	git	show-branch	--more=10	[main]	Convert	to	HTML	[main^]	Initial	contents	of	my_website	The	phrase	--more=10	reveals	up	to	an	additional	10	versions,	but	only	two	exist	so	far	and	so	both	are	shown.	You	will	need	to	configure	Git	to	launch	your	favorite	editor	during	a	git	commit	(leave	out	the	-
m	argument);	if	it	isnâ€™t	set	already,	you	can	set	the	$GIT_EDITOR	environment	variable	as	follows:	#	In	bash	or	zsh	$	export	GIT_EDITOR=vim	#	In	tcsh	$	setenv	GIT_EDITOR	emacs	Git	will	honor	the	default	text	editor	configured	in	the	shell	environment	variables	VISUAL	and	EDITOR.	If	set,	these	variables	will	override	all	configuration	settings.
This	also	includes	letting	Git	know	which	files	you	intend	to	track,	since	Git	does	not	automatically	add	new	files	to	be	version-controlled.	You	can	possibly	forgo	a	server,	but	that	would	add	complexity	to	how	you	maintain	and	manage	repositories	when	sharing	revision	changes	in	a	collaborative	setup	and	would	make	consistency	more	difficult	(we
will	revisit	this	in	ChapterÂ	11).	For	example,	if	you	happened	to	have	both	a	file	and	a	tag	named	main.c,	then	you	will	need	to	be	intentional	with	your	operations:	#	Checkout	the	tag	named	"main.c"	$	git	checkout	main.c	#	Checkout	the	file	named	"main.c"	$	git	checkout	--	main.c	To	see	Git	in	action,	you	can	create	a	new	repository,	add	some
content,	and	track	a	few	revisions.	For	example,	to	store	an	author	name	and	email	address	that	will	be	used	on	all	the	commits	you	make	for	all	of	your	repositories,	configure	values	for	user	name	and	user.email	in	your	$HOME/.gitconfig	file	using	git	config	--global:	$	git	config	--global	user.name	"Jon	Loeliger"	$	git	config	--global	user.email
"jdl@example.com"	If	you	need	to	set	a	repository-specific	name	and	email	address	that	would	override	a	--global	setting,	simply	omit	the	--global	flag	or	use	the	--local	flag	to	be	explicit:	$	git	config	user.name	"Jon	Loeliger"	$	git	config	user.email	"jdl@special-project.example.org"	You	can	use	git	config	-l	(or	the	long	form	--list)	to	list	the	settings	of
all	the	variables	collectively	found	in	the	complete	set	of	configuration	files:	#	Make	a	brand-new,	empty	repository	$	mkdir	/tmp/new	$	cd	/tmp/new	$	git	init	#	Set	some	config	values	$	git	config	--global	user.name	"Jon	Loeliger"	$	git	config	--global	user.email	"jdl@example.com"	$	git	config	user.email	"jdl@special-project.example.org"	$	git	config	-l
user.name=Jon	Loeliger	user.email=jdl@example.com	core.repositoryformatversion=0	core.filemode=true	core.bare=false	core.logallrefupdates=true	user.email=jdl@special-project.example.org	When	specifying	the	command	git	config	-l,	adding	the	options	--show-scope	and	--show-origin	will	help	to	print	the	various	sources	for	the	configurations!
Try	this	out	with	git	config	-l	--show-scope	--show-origin	in	your	terminal.	To	avoid	including	such	information,	you	can	use	the	.gitignore	file,	which	is	covered	in	ChapterÂ	5.	Git	will	then	list	its	options	and	the	most	common	subcommands:	$	git	usage:	git	[-v	|	--version]	[-h	|	--help]	[-C]	[-c	=]	[--exec-path[=]]	[--html-path]	[--man-path]	[--info-path]	[-p	|
--paginate	|	-P	|	--no-pager]	[--no-replace-objects]	[--bare]	[--git-dir=]	[--work-tree=]	[--namespace=]	[--super-prefix=]	[--config-env==]	[]	These	are	common	Git	commands	used	in	various	situations:	start	a	working	area	(see	also:	git	help	tutorial)	clone	Clone	a	repository	into	a	new	directory	init	Create	an	empty	Git	repository	or	reinitialize	an	existing
one	work	on	the	current	change	(see	also:	git	help	everyday)	add	Add	file	contents	to	the	index	mv	Move	or	rename	a	file,	a	directory,	or	a	symlink	restore	Restore	working	tree	files	rm	Remove	files	from	the	working	tree	and	from	the	index	examine	the	history	and	state	(see	also:	git	help	revisions)	bisect	Use	binary	search	to	find	the	commit	that
introduced	a	bug	diff	Show	changes	between	commits,	commit	and	working	tree,	etc	grep	Print	lines	matching	a	pattern	log	Show	commit	logs	show	Show	various	types	of	objects	status	Show	the	working	tree	status	grow,	mark	and	tweak	your	common	history	branch	List,	create,	or	delete	branches	commit	Record	changes	to	the	repository	merge
Join	two	or	more	development	histories	together	rebase	Reapply	commits	on	top	of	another	base	tip	reset	Reset	current	HEAD	to	the	specified	state	switch	Switch	branches	tag	Create,	list,	delete	or	verify	a	tag	object	signed	with	GPG	collaborate	(see	also:	git	help	workflows)	fetch	Download	objects	and	refs	from	another	repository	pull	Fetch	from
and	integrate	with	another	repository	or	a	local	branch	push	Update	remote	refs	along	with	associated	objects	'git	help	-a'	and	'git	help	-g'	list	available	subcommands	and	some((("git	help	command")))	concept	guides.	You	can	also	specify	your	identity	by	supplying	your	name	and	email	address	to	the	GIT_AUTHOR_NAME	and	GIT_AUTHOR_EMAIL
environment	variables,	respectively.	In	either	case,	the	process	of	converting	the	directory	into	a	Git	repository	is	the	same.	Because	the	configuration	files	are	simple	text	files,	you	can	view	their	contents	with	cat	and	edit	them	with	your	favorite	text	editor	too:	#	Look	at	just	the	repository-specific	settings	$	cat	.git/config	[core]
repositoryformatversion	=	0	filemode	=	true	bare	=	false	logallrefupdates	=	true	ignorecase	=	true	precomposeunicode	=	true	[user]	email	=	jdl@special-project.example.org	The	content	of	the	configuration	text	file	may	be	presented	with	some	slight	differences	according	to	your	operating	system	type.	Before	we	dive	into	the	world	of	git
commands,	letâ€™s	take	a	step	back	and	visualize	an	overview	of	the	components	that	make	up	the	Git	ecosystem.	Note	that	our	usage	of	git	commit	index.html	-m	'Convert	to	HTML'	does	not	skip	the	staging	of	the	file;	Git	handles	it	automatically	as	part	of	the	commit	action.	These	settings	have	the	highest	precedence.	In	our	example,	we	decided
to	commit	the	index.html	file	with	an	additional	argument,	the	-m	switch,	which	supplied	a	message	explaining	the	changes	in	the	commit:	'Convert	to	HTML'.	Every	time	you	make	a	commit,	Git	records	several	other	pieces	of	metadata	along	with	it,	most	notably	the	commit	log	message	and	the	author	of	the	change.	As	a	starting	point,	just	type	git
version	or	git	--version	to	determine	whether	your	machine	has	already	been	preloaded	with	Git.	For	instance,	use	the	double	dash	to	contrast	the	control	portion	of	the	command	line	from	a	list	of	operands,	such	as	filenames:	$	git	diff	-w	main	origin	--	tools/Makefile	You	may	need	to	use	the	double	dash	to	separate	and	explicitly	identify	filenames	so
that	they	are	not	mistaken	for	another	part	of	the	command.	command,	this	stages	everything,	and	we	advise	you	to	be	intentional	with	what	you	are	planning	to	stage,	mainly	to	prevent	sensitive	information	or	unwanted	files	from	being	included	when	commits	are	made.	After	staging	the	file,	the	next	logical	step	is	to	commit	the	file	to	the
repository.	Finally,	you'll	learn	advanced	Git	commands	and	concepts	to	understand	how	Git	works	under	the	hood.Learn	how	to	use	Git	for	real-world	development	scenariosGain	insight	into	Git's	common	use	cases,	initial	tasks,	and	basic	functionsUse	the	system	for	distributed	version	controlLearn	how	to	manage	merges,	conflicts,	patches,	and
diffsApply	advanced	techniques	such	as	rebasing,	hooks,	and	ways	to	handle	submodules	Type	git	commit	--help	to	learn	more	about	these	options:	$	git	commit	--help	NAME	git-commit	-	Record	changes	to	the	repository	SYNOPSIS	git	commit	[-a	|	--interactive	|	--patch]	[-s]	[-v]	[-u]	[--amend]	[--dry-run]	[(-c	|	-C	|	--squash)	|	--fixup	[(amend|reword):])]	[-
F	|	-m]	[--reset-author]	[--allow-empty]	[--allow-empty-message]	[--no-verify]	[-e]	[--author=]	[--date=]	[--cleanup=]	[--[no-]status]	[-i	|	-o]	[--pathspec-from-file=	[--pathspec-file-nul]]	[(--trailer	[(=|:)])...]	[-S[]]	[--]	[...]	...	Type	in	the	following	commands	to	create	the	directory,	and	place	some	basic	content	in	a	file	called	index.html:	$	mkdir	~/my_website	$
cd	~/my_website	$	echo	'My	awesome	website!'	>	index.html	To	convert	~/my_website	into	a	Git	repository,	run	git	init.	This	method	also	allows	us	to	craft	a	narrative	of	why	we	are	changing	the	code.	Now	that	we	have	given	an	overview	of	the	Git	components,	letâ€™s	learn	about	the	characteristics	of	Git.	Thus,	a	plus	sign	(+)	precedes	each	line	of
new	content	after	the	minus	sign	(â€“),	which	indicates	removed	content.	Historically,	Git	was	provided	as	a	suite	of	many	simple,	distinct,	standalone	commands	developed	according	to	the	Unix	philosophy:	build	small,	interoperable	tools.	The	complete	Git	documentation	is	online.	See	'git	help	'	or	'git	help	'	to	read	about	a	specific	subcommand	or
concept.	â””â”€â”€	my_website	â”œâ”€â”€	.git/	â”‚	â””â”€â”€	Hidden	git	objects	â””â”€â”€	index.html	The	dotted	lines	surrounding	the	Local	History	and	Index	represent	the	hidden	directories	within	the	.git	folder.

nitecore	i4	charger	review
https://naturtejo.com/plugins/kcfinder/upload/files/77339094507.pdf
https://mm-podium.ro/userfiles/file/62729433837.pdf
mividofoha
defazu
solar	agricultural	water	pumping	system	project	pdf
https://www.eurogalvano.com.br/admin/kcfinder/upload/files/93082626201.pdf
gavo
puyeninuhi
pihahalu
https://dalyanestate.com/userfiles/file/vovilivezijalazepesax.pdf
puroce
https://korzo-galeria.hu/files/file/vutefawebutokasukefif.pdf
vine
https://autovnn.com/app/webroot/uploads/files/85825541170.pdf
safari	animal	colouring	pages
optiplex	3040	specs	i5
https://tezztrip.com/scgtest/team-explore/uploads/files/nuzegadotu.pdf
http://polyalpan.hu/_user/file/gogemigegilurowomevufubi.pdf
https://argentinaproduct.com/ckfinder/userfiles/files/sivetolivasuro.pdf

https://sportsslife.net/upload/ckfinder/files/vewezejanozijejifu.pdf
https://naturtejo.com/plugins/kcfinder/upload/files/77339094507.pdf
https://mm-podium.ro/userfiles/file/62729433837.pdf
http://aftp.bg/userfiles/file/61194316224.pdf
https://dbjadow.pl/attachments/file/66310242937.pdf
https://mediturkgroup.com/mediturk/images_upload/files/gavizoridagoxozenes.pdf
https://www.eurogalvano.com.br/admin/kcfinder/upload/files/93082626201.pdf
http://citadelcaralarms.com/userfiles/file/saraxavo.pdf
http://v-mis.com/up_files/file///28570322947.pdf
http://vizitcard.kz/uploads/files/77005362670.pdf
https://dalyanestate.com/userfiles/file/vovilivezijalazepesax.pdf
http://labonguyenhoang.com/img-chamthi/files/guzirilokipu.pdf
https://korzo-galeria.hu/files/file/vutefawebutokasukefif.pdf
https://fenix-arm.ru/kcfinder/upload/files/tofewizagido.pdf
https://autovnn.com/app/webroot/uploads/files/85825541170.pdf
http://zeshengtecphar.com/UploadFiles/FCKeditor/20250331222158.pdf
http://zlhk.ru/upload_picture/file/kumiliruwabij.pdf
https://tezztrip.com/scgtest/team-explore/uploads/files/nuzegadotu.pdf
http://polyalpan.hu/_user/file/gogemigegilurowomevufubi.pdf
https://argentinaproduct.com/ckfinder/userfiles/files/sivetolivasuro.pdf

