Android get thumbnail from video url

http://gluvoob.com/c3?utm_term=android+get+thumbnail+from+video+url

MEHEEMBHI.II(HH

FOTO DAN VIDEC
YANG TERHAPUS DI HP

7 ﬂ] '{T_-')‘ 6:06 pM

AndrnidThumbnaIlLIst

/sdcard/Video/Android 2.2 Official
Video_low.mp4

e/ sdcard/Video/Android 2.3 Official
ideo_low.mp4

/sdcard/Video/Android 3.0 Preview low.

M/ sdcard/Video/Android in Spaaaaaace!.
mpa

m/sdcard/Video/Android In

]5 paaaaaace!_low.mp4

e/ sdcard/Video/What is an Android phone
]
_= e 0w, mp4
o @

|'_':| B et gperarmordesliie

ﬁ Glenalmond College
ﬁ 3 .

Seotermber 2022

r:'I.|!'."!.!-',|- 1 I:-I-_ :- |'I|__|-|'-r .I.IJ .-

1 700

Girls o 158 Team Preseason Tour Lo

Haaf £ #=fonn

How to get thumbnail from video url in android using picasso. How to get thumbnail from video url in android using glide. How to get thumbnail from server video url in android github. How to get thumbnail from server video url in android. How to get thumbnail from youtube video url in android. Get thumbnail from video url android github.

An intent allows you to start an activity in another app by describing a simple action you'd like to perform (such as "view a map" or "take a picture") in an Intent object. This type of intent is called an implicit intent because it does not specify the app component to start, but instead specifies an action and provides some data with which to perform the
action. When you call startActivity() or startActivityForResult() and pass it an implicit intent, the system resolves the intent to an app that can handle the intent and starts its corresponding Activity. If there's more than one app that can handle the intent, the system presents the user with a dialog to pick which app to use. This page describes several
implicit intents that you can use to perform common actions, organized by the type of app that handles the intent. Each section also shows how you can create an intent filter to advertise your app's ability to perform the same action. Caution: If there are no apps on the device that can receive the implicit intent, your app will crash when it calls
startActivity(). To first verify that an app exists to receive the intent, call resolveActivity() on your Intent object. If the result is non-null, there is at least one app that can handle the intent and it's safe to call startActivity(). If the result is null, you should not use the intent and, if possible, you should disable the feature that invokes the intent. If you're
not familiar with how to create intents or intent filters, you should first read Intents and Intent Filters. To create a new alarm, use the ACTION SET ALARM action and specify alarm details such as the time and message using extras defined below.Note: Only the hour, minutes, and message extras are available in Android 2.3 (API level 9) and lower.
The other extras were added in later versions of the platform. fun createAlarm(message: String, hour: Int, minutes: Int) { val intent = Intent(AlarmClock.ACTION SET ALARM).apply { putExtra(AlarmClock.EXTRA MESSAGE, message) putExtra(AlarmClock.EXTRA HOUR, hour) putExtra(AlarmClock.EXTRA MINUTES, minutes) } if
(intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void createAlarm(String message, int hour, int minutes) { Intent intent = new Intent(AlarmClock ACTION SET ALARM) putExtra(AlarmClock EXTRA MESSAGE, message) putExtra(AlarmClock EXTRA HOUR, hour) putExtra(AlarmClock EXTRA MINUTES, minutes);
if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } To create a countdown timer, use the ACTION SET TIMER action and specify timer details such as the duration using extras defined below. Note: This intent was added in Android 4.4 (API level 19). fun startTimer(message: String, seconds: Int) { val intent =
Intent(AlarmClock. ACTION SET TIMER).apply { putExtra(AlarmClock.EXTRA MESSAGE, message) putExtra(AlarmClock.EXTRA LENGTH, seconds) putExtra(AlarmClock.EXTRA SKIP UI, true) } if (intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void startTimer(String message, int seconds) { Intent intent = new
Intent(AlarmClock. ACTION SET TIMER) .putExtra(AlarmClock.EXTRA MESSAGE, message) .putExtra(AlarmClock. EXTRA LENGTH, seconds) .putExtra(AlarmClock. EXTRA SKIP U, true); if (intent. resolveAct1v1ty(getPackageManager()) != null) { startActivity(intent); } } Although not many apps will invoke this intent (it's primarily used by system
apps), any app that behaves as an alarm clock should implement this intent filter and respond by showing the list of current alarms.Note: This intent was added in Android 4. 4 (API level 19).To add a new event to the user's calendar, use the ACTION _INSERT action and specify the data URI with Events. CONTENT URI. You can then specify various
event details using extras defined below. fun addEvent(title: String, location: String, begin: Long, end: Long) { val intent = Intent(Intent. ACTION INSERT).apply { data = Events. CONTENT URI putExtra(Events.TITLE, title) putExtra(Events. EVENT_LOCATION location) putExtra(CalendarContract. EXTRA EVENT BEGIN TIME, begin)
putExtra(CalendarContract. EXTRA EVENT END TIME, end) } if (intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void addEvent(String title, String location, long begin, long end) { Intent intent = new Intent(Intent. ACTION INSERT) .setData(Events. CONTENT URI) .putExtra(Events.TITLE, title)

.putExtra(Events. EVENT LOCATION, location) .putExtra(CalendarContract. EXTRA EVENT BEGIN TIME, begin) .putExtra(CalendarContract. EXTRA EVENT END TIME, end); if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } To open a camera app and receive the resulting photo or video, use the
ACTION IMAGE_CAPTURE or ACTION _VIDEO_CAPTURE action. Also specify the URI location where you'd like the camera to save the photo or video, in the EXTRA OUTPUT extra.When the camera app successfully returns focus to your activity (your app receives the onActivityResult() callback), you can access the photo or video at the URI you
specified with the EXTRA OUTPUT value.Note: When you use ACTION IMAGE CAPTURE to capture a photo, the camera may also return a downscaled copy (a thumbnail) of the photo in the result Intent, saved as a Bitmap in an extra field named "data". const val REQUEST IMAGE CAPTURE = 1 val locationForPhotos: Uri = ... fun
capturePhoto(targetFilename: String) { val intent = Intent(MediaStore. ACTION IMAGE CAPTURE).apply { putExtra(MediaStore.EXTRA OUTPUT, Uri.withAppendedPath(locationForPhotos, targetFilename)) } if (intent.resolveActivity(packageManager) != null) { startActivityForResult(intent, REQUEST IMAGE CAPTURE) } } override fun
onActivityResult(requestCode: Int, resultCode: Int, data: Intent) { if (requestCode == REQUEST IMAGE CAPTURE && resultCode == Activity. RESULT OK) { val thumbnail: Bitmap = data.getParcelableExtra("data") // Do other work with full size photo saved in locationForPhotos ... } } static final int REQUEST IMAGE CAPTURE = 1; static final Uri
locationForPhotos; public void capturePhoto(String targetFilename) { Intent intent = new Intent(MediaStore. ACTION IMAGE CAPTURE); intent.putExtra(MediaStore.EXTRA OUTPUT, Uri.withAppendedPath(locationForPhotos, targetFilename)); if (intent.resolveActivity(getPackageManager()) != null) { startActivityForResult(intent,
REQUEST IMAGE CAPTURE); } } @Override protected void onActivityResult(int requestCode, int resultCode, Intent data) { if (requestCode == REQUEST IMAGE CAPTURE && resultCode == RESULT OK) { Bitmap thumbnail = data.getParcelableExtra("data"); // Do other work with full size photo saved in locationForPhotos ... } } To do this when
working beyond Anroid 11, refer to the example intent below. val REQUEST IMAGE CAPTURE = 1 private fun dispatchTakePicturelntent() { val takePicturelntent = Intent(MediaStore. ACTION IMAGE CAPTURE) try { startActivityForResult(takePicturelntent, REQUEST IMAGE CAPTURE) } catch (e: ActivityNotFoundException) { // display error
state to the user } } static final int REQUEST IMAGE CAPTURE = 1; private void dispatchTakePicturelntent() { Intent takePicturelntent = new Intent(MediaStore. ACTION IMAGE CAPTURE); try { startActivityForResult(takePictureIlntent, REQUEST IMAGE CAPTURE); } catch (ActivityNotFoundException e) { // display error state to the user } }
For more information about how to use this intent to capture a photo, including how to create an appropriate Uri for the output location, read Taking Photos Simply or Taking Videos Simply. Example intent filter: When handling this intent, your activity should check for the EXTRA OUTPUT extra in the incoming Intent, then save the captured image or
video at the location specified by that extra and call setResult() with an Intent that includes a compressed thumbnail in an extra named "data". Start a camera app in still image mode Google Voice Actions To open a camera app in still image mode, use the INTENT ACTION STILL IMAGE CAMERA action. Action

INTENT ACTION STILL IMAGE CAMERA Data URI Scheme None MIME Type None Extras None Example intent: private fun dispatchTakePictureIntent() { val takePicturelntent = Intent(MediaStore. ACTION IMAGE CAPTURE) try { startActivityForResult(takePictureIntent, REQUEST IMAGE CAPTURE) } catch (e: ActivityNotFoundException) { //
display error state to the user } } public void capturePhoto(String targetFilename) { Intent intent = new Intent(MediaStore., ACTION IMAGE CAPTURE); intent.putExtra(MediaStore. EXTRA OUTPUT, Uri.withAppendedPath(locationForPhotos, targetFilename)); if (intent.resolveActivity(getPackageManager()) != null) { startActivityForResult(intent,
REQUEST IMAGE CAPTURE); } } Example intent filter: Start a camera app in video mode Google Voice Actions To open a camera app in video mode, use the INTENT ACTION VIDEO CAMERA action. Action INTENT ACTION VIDEO CAMERA Data URI Scheme None MIME Type None Extras None Example intent: fun capturePhoto() { val intent =
Intent(MediaStore.INTENT ACTION VIDEO CAMERA) if (intent.resolveActivity(packageManager) != null) { startActivityForResult(intent, REQUEST IMAGE CAPTURE) 1} pubhc void capturePhoto() { Intent intent = new Intent(MedlaStore INTENT ACTION VIDEO CAMERA); if (intent.resolveActivity(getPackageManager()) != null) {
startAct1v1tyForResult(lntent REQUEST IMAGE CAPTURE); } } Example intent filter: To have the user select a contact and provide your app access to all the contact information, use the ACTION PICK action and specify the MIME type to Contacts. CONTENT TYPE. The result Intent delivered to your onActivityResult() callback contains the content:
URI pointing to the selected contact. The response grants your app temporary permissions to read that contact using the Contacts Provider API even if your app does not include the READ_CONTACTS permission. Tip: If you need access to only a specific piece of contact information, such as a phone number or email address, instead see the next
section about how to select specific contact data. Action ACTION PICK Data URI Scheme None MIME Type Contacts. CONTENT TYPE Example intent: const val REQUEST SELECT CONTACT = 1 fun selectContact() { val intent = Intent(Intent. ACTION PICK).apply { type = ContactsContract.Contacts. CONTENT TYPE } if
(intent.resolveActivity(packageManager) != null) { startActivityForResult(intent, REQUEST SELECT CONTACT) } } override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent) { if (requestCode == REQUEST SELECT CONTACT && resultCode == RESULT OK) { val contactUri: Uri = data.data // Do something with the selected
contact at contactUri //... } } static final int REQUEST SELECT CONTACT = 1; public void selectContact() { Intent intent = new Intent(Intent. ACTION PICK); intent.setType(ContactsContract.Contacts. CONTENT TYPE); if (intent.resolveActivity(getPackageManager()) != null) { startActivityForResult(intent, REQUEST SELECT CONTACT); } }
@Override protected void onActivityResult(int requestCode, int resultCode, Intent data) { if (requestCode == REQUEST SELECT CONTACT && resultCode == RESULT OK) { Uri contactUri = data.getData(); // Do something with the selected contact at contactUri ... } } For information about how to retrieve contact details once you have the contact
URI, read Retrieving Details for a Contact. When you retrieve the contact URI using the above intent, you generally don't need the READ CONTACTS permission to read basic details for that contact, such as display name and whether the contact is starred. However, if you're trying to read more specific data about a given contact—such as their
phone number or email address—you need the READ CONTACTS permission. To have the user select a specific piece of information from a contact, such as a phone number, email address, or other data type, use the ACTION PICK action and specify the MIME type to one of the content types listed below, such as
CommonDataKinds.Phone. CONTENT TYPE to get the contact's phone number. Note: In many cases, your app needs to have the READ CONTACTS permission in order to view specific information about a particular contact. If you need to retrieve only one type of data from a contact, this technique with a CONTENT TYPE from the
ContactsContract.CommonDataKinds classes is more efficient than using the Contacts. CONTENT TYPE (as shown in the previous section) because the result provides you direct access to the desired data without requiring you to perform a more complex query to Contacts Provider. The result Intent delivered to your onActivityResult() callback
contains the content: URI pointing to the selected contact data. The response grants your app temporary permissions to read that contact data even if your app does not include the READ CONTACTS permission. Action ACTION PICK Data URI Scheme None MIME Type CommonDataKinds.Phone. CONTENT TYPE Pick from contacts with a phone
number. CommonDataKinds.Email. CONTENT TYPE Pick from contacts with an email address. CommonDataKinds.StructuredPostal. CONTENT TYPE Pick from contacts with a postal address. Or one of many other CONTENT TYPE values under ContactsContract. Example intent: const val REQUEST SELECT PHONE NUMBER = 1 fun selectContact()
{ // Start an activity for the user to pick a phone number from contacts val intent = Intent(Intent. ACTION PICK).apply { type = CommonDataKinds.Phone.CONTENT TYPE } if (intent.resolveActivity(packageManager) != null) { startActivityForResult(intent, REQUEST SELECT PHONE NUMBER) } } override fun onActivityResult(requestCode: Int,
resultCode: Int, data: Intent) { if (requestCode == REQUEST SELECT PHONE NUMBER && resultCode == Activity. RESULT OK) { // Get the URI and query the content provider for the phone number val contactUri: Uri = data.data val projection: Array = arrayOf(CommonDataKinds.Phone.NUMBER) contentResolver.query(contactUri, projection,
null, null, null).use { cursor -> // If the cursor returned is valid, get the phone number if (cursor.moveToFirst()) { val numberIndex = cursor.getColumnindex(CommonDataKinds.Phone. NUMBER) val number = cursor.getString(numberIndex) // Do something with the phone number ... } } } } static final int REQUEST SELECT PHONE NUMBER = 1;
public void selectContact() { // Start an activity for the user to pick a phone number from contacts Intent intent = new Intent(Intent. ACTION PICK); intent.setType(CommonDataKinds.Phone. CONTENT TYPE); if (intent.resolveActivity(getPackageManager()) != null) { startActivityForResult(intent, REQUEST SELECT PHONE NUMBER); } }
@Override protected void onActivityResult(int requestCode, int resultCode, Intent data) { if (requestCode == REQUEST SELECT PHONE NUMBER && resultCode == RESULT OK) { // Get the URI and query the content provider for the phone number Uri contactUri = data.getData(); String[] projection = new String[]

{CommonDataKinds.Phone. NUMBERY}; Cursor cursor = getContentResolver().query(contactUri, projection, null, null, null); // If the cursor returned is valid, get the phone number if (cursor != null && cursor.moveToFirst()) { int numberIndex = cursor.getColumnIndex(CommonDataKinds.Phone. NUMBER); String number =
cursor.getString(numberIndex); // Do something with the phone number //... } } } To display the details for a known contact, use the ACTION VIEW action and specify the contact with a content: URI as the intent data. There are primarily two ways to initially retrieve the contact's URIL: Use the contact URI returned by the ACTION PICK, shown in the
previous section (this approach does not require any app permissions). Access the list of all contacts directly, as described in Retrieving a List of Contacts (this approach requires the READ CONTACTS permission). Action ACTION VIEW Data URI Scheme content: MIME Type None. The type is inferred from contact URI. Example intent: fun
viewContact(contactUri: Uri) { val intent = Intent(Intent. ACTION VIEW, contactUri) if (intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void viewContact(Uri contactUri) { Intent intent = new Intent(Intent. ACTION VIEW, contactUri); if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } }
To edit a known contact, use the ACTION EDIT action, specify the contact with a content: URI as the intent data, and include any known contact information in extras specified by constants in ContactsContract.Intents.Insert. There are primarily two ways to initially retrieve the contact URI: Use the contact URI returned by the ACTION PICK, shown
in the previous section (this approach does not require any app permissions). Access the list of all contacts directly, as described in Retrieving a List of Contacts (this approach requires the READ CONTACTS permission). Action ACTION EDIT Data URI Scheme content: MIME Type The type is inferred from contact URI. Extras One or more of the
extras defined in ContactsContract.Intents.Insert so you can populate fields of the contact details. Example intent: fun editContact(contactUri: Uri, email: String) { val intent = Intent(Intent. ACTION EDIT).apply { data = contactUri putExtra(ContactsContract.Intents.Insert. EMAIL, email) } if (intent.resolveActivity(packageManager) != null) {
startActivity(intent) } } public void editContact(Uri contactUri, String email) { Intent intent = new Intent(Intent. ACTION EDIT); intent.setData(contactUri); intent.putExtra(Intents.Insert. EMAIL, email); if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } For more information about how to edit a contact, read Modifying
Contacts Using Intents. To insert a new contact, use the ACTION INSERT action, specify Contacts. CONTENT TYPE as the MIME type, and include any known contact information in extras specified by constants in ContactsContract.Intents.Insert. Action ACTION INSERT Data URI Scheme None MIME Type Contacts. CONTENT TYPE Extras One or
more of the extras defined in ContactsContract.Intents.Insert. Example intent: fun insertContact(name: String, email: String) { val intent = Intent(Intent. ACTION INSERT).apply { type = ContactsContract.Contacts. CONTENT TYPE putExtra(ContactsContract.Intents.Insert. NAME, name) putExtra(ContactsContract.Intents.Insert. EMAIL, email) } if
(intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void insertContact(String name, String email) { Intent intent = new Intent(Intent. ACTION INSERT); intent.setType(Contacts. CONTENT TYPE); intent.putExtra(Intents.Insert. NAME, name); intent.putExtra(Intents.Insert. EMAIL, email); if
(intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } For more information about how to insert a contact, read Modifying Contacts Using Intents. Email Compose an email with optional attachments To compose an email, use one of the below actions based on whether you'll include attachments, and include email details
such as the recipient and subject using the extra keys listed below. Action ACTION _SENDTO (for no attachment) or ACTION_SEND (for one attachment) or ACTION _SEND MULTIPLE (for multiple attachments) Data URI Scheme None MIME Type "text/plain" "*/*" Extras Intent. EXTRA EMAIL A string array of all "To" recipient email addresses.
Intent.EXTRA CC A string array of all "CC" recipient email addresses. Intent. EXTRA BCC A string array of all "BCC" recipient email addresses. Intent. EXTRA SUBJECT A string with the email subject. Intent. EXTRA TEXT A string with the body of the email. Intent. EXTRA STREAM A Uri pointing to the attachment. If using the
ACTION SEND MULTIPLE action, this should instead be an ArrayList containing multiple Uri objects. Example intent: fun composeEmail(addresses: Array, subject: String, attachment: Uri) { val intent = Intent(Intent. ACTION SEND).apply { type = "*/*" putExtra(Intent. EXTRA EMAIL, addresses) putExtra(Intent. EXTRA SUBJECT, subject)
putExtra(Intent EXTRA STREAM, attachment) } if (intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void composeEmail(String[] addresses, String subject, Uri attachment) { Intent intent = new Intent(Intent. ACTION SEND); intent. setType("*/*") intent.putExtra(Intent. EXTRA EMAIL, addresses);
intent.putExtra(Intent. EXTRA SUBJECT, subject); intent.putExtra(Intent. EXTRA STREAM, attachment); if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } If you want to ensure that your intent is handled only by an email app (and not other text messaging or social apps), then use the ACTION _SENDTO action and
include the "mailto:" data scheme. For example: fun composeEmail(addresses: Array, subject: String) { val intent = Intent(Intent. ACTION SENDTO).apply { data = Uri.parse("mailto:") // only email apps should handle this putExtra(Intent. EXTRA EMAIL, addresses) putExtra(Intent. EXTRA SUBJECT, subject) } if
(intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void composeEmail(String[] addresses, String subject) { Intent intent = new Intent(Intent. ACTION SENDTO); intent.setData(Uri.parse("mailto:")); // only email apps should handle this intent.putExtra(Intent. EXTRA EMAIL, addresses);
intent.putExtra(Intent. EXTRA SUBJECT, subject); if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } Example intent filter: File Storage Retrieve a specific type of file To request that the user select a file such as a document or photo and return a reference to your app, use the ACTION GET CONTENT action and
specify your desired MIME type. The file reference returned to your app is transient to your activity's current lifecycle, so if you want to access it later you must import a copy that you can read later. This intent also allows the user to create a new file in the process (for example, instead of selecting an existing photo, the user can capture a new photo
with the camera). The result intent delivered to your onActivityResult() method includes data with a URI pointing to the file. The URI could be anything, such as an http: URI, file: URI, or content: URI. However, if you'd like to restrict selectable files to only those that are accessible from a content provider (a content: URI) and that are available as a
file stream with openFileDescriptor(), you should add the CATEGORY OPENABLE category to your intent. On Android 4.3 (API level 18) and higher, you can also allow the user to select multiple files by adding EXTRA ALLOW_MULTIPLE to the intent, set to true. You can then access each of the selected files in a ClipData object returned by
getClipData(). Action ACTION GET CONTENT Data URI Scheme None MIME Type The MIME type corresponding to the file type the user should select. Extras EXTRA ALLOW MULTIPLE A boolean declaring whether the user can select more than one file at a time. EXTRA LOCAL ONLY A boolean that declares whether the returned file must be
available directly from the device, rather than requiring a download from a remote service. Category (optional) CATEGORY OPENABLE To return only "openable" files that can be represented as a file stream with openFileDescriptor(). Example intent to get a photo: const val REQUEST IMAGE GET = 1 fun selectlmage() { val intent =
Intent(Intent. ACTION _GET CONTENT).apply { type = "image/*" } if (intent.resolveActivity(packageManager) != null) { startActivityForResult(intent, REQUEST IMAGE GET) } } override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent) { if (requestCode == REQUEST IMAGE GET && resultCode == Activity. RESULT OK) { val
thumbnail: Bitmap = data.getParcelableExtra("data") val fullPhotoUri: Uri = data.data // Do work with photo saved at fullPhotoUri ... } } static final int REQUEST IMAGE GET = 1; public void selectimage() { Intent intent = new Intent(Intent. ACTION GET CONTENT); intent.setType("image/*"); if (intent.resolveActivity(getPackageManager()) != null)
{ startActivityForResult(intent, REQUEST IMAGE GET); } } @Override protected void onActivityResult(int requestCode, int resultCode, Intent data) { if (requestCode == REQUEST IMAGE GET && resultCode == RESULT OK) { Bitmap thumbnail = data.getParcelable("data"); Uri fullPhotoUri = data.getData(); // Do work with photo saved at
fullPhotoUri ... } } Example intent filter to return a photo: Open a specific type of file Instead of retrieving a copy of a file that you must import to your app (by using the ACTION GET CONTENT action), when running on Android 4.4 or higher, you can instead request to open a file that's managed by another app by using the
ACTION OPEN DOCUMENT action and specifying a MIME type. To also allow the user to instead create a new document that your app can write to, use the ACTION CREATE DOCUMENT action instead. For example, instead of selecting from existing PDF documents, the ACTION CREATE DOCUMENT intent allows users to select where they'd like
to create a new document (within another app that manages the document's storage)—your app then receives the URI location of where it can write the new document. Whereas the intent delivered to your onActivityResult() method from the ACTION GET CONTENT action may return a URI of any type, the result intent from
ACTION OPEN DOCUMENT and ACTION CREATE DOCUMENT always specify the chosen file as a content: URI that's backed by a DocumentsProvider. You can open the file with openFileDescriptor() and query its details using columns from DocumentsContract.Document. The returned URI grants your app long-term read access to the file (also
possibly with write access). So the ACTION _OPEN DOCUMENT action is particularly useful (instead of using ACTION GET CONTENT) when you want to read an existing file without making a copy into your app, or when you want to open and edit a file in place. You can also allow the user to select multiple files by adding EXTRA ALLOW_MULTIPLE
to the intent, set to true. If the user selects just one item, then you can retrieve the item from getData(). If the user selects more than one item, then getData() returns null and you must instead retrieve each item from a ClipData object that is returned by getClipData(). Note: Your intent must specify a MIME type and must declare the
CATEGORY OPENABLE category. If appropriate, you can specify more than one MIME type by adding an array of MIME types with the EXTRA MIME TYPES extra—if you do so, you must set the primary MIME type in setType() to "*/*". Action ACTION OPEN DOCUMENT or ACTION CREATE DOCUMENT Data URI Scheme None MIME Type The
MIME type corresponding to the file type the user should select. Extras EXTRA MIME TYPES An array of MIME types corresponding to the types of files your app is requesting. When you use this extra, you must set the primary MIME type in setType() to "*/*". EXTRA ALLOW_ MULTIPLE A boolean that declares whether the user can select more than
one file at a time. EXTRA TITLE For use with ACTION CREATE DOCUMENT to specify an initial file name. EXTRA LOCAL ONLY A boolean that declares whether the returned file must be available directly from the device, rather than requiring a download from a remote service. Category CATEGORY OPENABLE To return only "openable" files that
can be represented as a file stream with openFlleDescrlptor() Example intent to get a photo: const val REQUEST _ IMAGE OPEN = 1 fun selectlmage2() { val intent = Intent(Intent. ACTION OPEN DOCUMENT).apply { type = "image/*" addCategory(Intent. CATEGORY OPENABLE) } // Only the system receives the ACTION OPEN DOCUMENT, so no
need to test. startActivityForResult(intent, REQUEST IMAGE_OPEN) } override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent) { if (requestCode == REQUEST _ IMAGE OPEN && resultCode = = Activity. RESULT OK) { val fullPhotoUri: Uri = data.data // Do work with full size photo saved at fullPhotoUri ... } } static final int
REQUEST IMAGE_OPEN = 1; public void selectimage() { Intent intent = new Intent(Intent. ACTION OPEN DOCUMENT); intent.setType("image/*"); intent.addCategory(Intent. CATEGORY OPENABLE); // Only the system receives the ACTION OPEN DOCUMENT, so no need to test. startActivityForResult(intent, REQUEST IMAGE _OPEN); }
@Override protected void onActivityResult(int requestCode, int resultCode, Intent data) { if (requestCode == REQUE ST IMAGE OPEN && resultCode == RESULT OK) { Uri fullPhotoUri = data.getData(); // Do work with full size photo saved at fullPhotoUri ... } } Third party apps cannot actually respond to an intent with the
ACTION OPEN DOCUMENT action. Instead, the system receives this intent and displays all the files available from various apps in a unified user interface. To provide your app's files in this UI and allow other apps to open them, you must implement a DocumentsProvider and include an intent filter for PROVIDER INTERFACE
("android.content.action. DOCUMENTS PROVIDER"). For example: For more information about how to make the files managed by your app openable from other apps, read the Storage Access Framework guide. Local Actions Call a car Google Voice Actions "get me a taxi" "call me a car" (Wear OS only) To call a taxi, use the
ACTION RESERVE TAXI RESERVATION action. Note: Apps must ask for confirmation from the user before completing the action. Action ACTION RESERVE TAXI RESERVATION Data URI None MIME Type None Extras None Example intent: fun callCar() { val intent = Intent(Reservelntents. ACTION RESERVE TAXI RESERVATION) if

(intent. resolveAct1v1ty(packageManager) 1= null) { startActivity(intent) } } public void callCar() { Intent intent = new Intent(Reservelntents. ACTION RESERVE TAXI _RESERVATION); if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } Example intent filter: Maps Show a location on a map To open a map, use the
ACTION VIEW action and specify the location information in the intent data with one of the schemes defined below. Action ACTION VIEW Data URI Scheme geo:latitude,longitude Show the map at the given longitude and latitude. Example: "geo0:47.6,-122.3" geo:latitude,longitude?z=zoom Show the map at the given longitude and latitude at a certain
zoom level. A zoom level of 1 shows the whole Earth, centered at the given lat,Ing. The highest (closest) zoom level is 23. Example: "ge0:47.6,-122.3?z=11" geo:0,0?q=lat,Ing(label) Show the map at the given longitude and latitude with a string label. Example: "geo0:0,0?q=34.99,-106.61(Treasure)" geo:0,0?q=my+street+address Show the location for
"my street address" (may be a specific address or location query). Example: "geo:0,0?q=1600+Amphitheatre+Parkway%2C+CA" Note: All strings passed in the geo URI must be encoded. For example, the string 1st & Pike, Seattle should become 1s5t%20%26%20Pike%2C%20Seattle. Spaces in the string can be encoded with %20 or replaced with the
plus sign (+). MIME Type None Example intent: fun showMap(geoLocation: Uri) { val intent = Intent(Intent. ACTION VIEW).apply { data = geoLocation } if (intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void showMap(Uri geoLocation) { Intent intent = new Intent(Intent. ACTION VIEW);
intent.setData(geoLocation) ; if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } Example intent filter: Music or Video To play a music file, use the ACTION VIEW action and specify the URI location of the file in the intent data. Action ACTION VIEW Data URI Scheme file: content: http: MIME Type "audio/*"
"application/ogg" "application/x-ogg" "application/itunes" Or any other that your app may require. Example intent: fun playMedia(file: Uri) { val intent = Intent(Intent. ACTION VIEW).apply { data = file } if (intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void playMedia(Uri file) { Intent intent = new
Intent(Intent. ACTION VIEW); intent.setData(file); if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } Example intent filter: Play music based on a search query Google Voice Actions "play michael jackson billie jean" To play music based on a search query, use the INTENT ACTION MEDIA PLAY FROM SEARCH intent.
An app may fire this intent in response to the user's voice command to play music. The receiving app for this intent performs a search within its inventory to match existing content to the given query and starts playing that content. This intent should include the EXTRA MEDIA FOCUS string extra, which specifies the intended search mode. For
example, the search mode can specify whether the search is for an artist name or song name. Action INTENT ACTION MEDIA PLAY FROM SEARCH Data URI Scheme None MIME Type None Extras MediaStore. EXTRA MEDIA FOCUS (required) Indicates the search mode (whether the user is looking for a particular artist, album, song, or playlist).
Most search modes take additional extras. For example, if the user is interested in listening to a particular song, the intent might have three additional extras: the song title, the artist, and the album. This intent supports the following search modes for each value of EXTRA MEDIA FOCUS: Any - "vnd.android.cursor.item/*" Play any music. The
receiving app should play some music based on a smart choice, such as the last playlist the user listened to. Additional extras: QUERY (required) - An empty string. This extra is always provided for backward compatibility: existing apps that do not know about search modes can process this intent as an unstructured search. Unstructured -
"vnd.android.cursor.item/*" Play a particular song, album or genre from an unstructured search query. Apps may generate an intent with this search mode when they can't identify the type of content the user wants to listen to. Apps should use more specific search modes when possible. Additional extras: QUERY (required) - A string that contains any
combination of: the artist, the album, the song name, or the genre. Genre - Audio.Genres.ENTRY CONTENT TYPE Play music of a particular genre. Additional extras: "android.intent.extra.genre" (required) - The genre. QUERY (required) The genre. This extra is always provided for backward compatibility: existing apps that do not know about search
modes can process this intent as an unstructured search. Artist - Audio.Artists. ENTRY CONTENT TYPE Play music from a particular artist. Additional extras: EXTRA MEDIA ARTIST (required) - The artist. "android.intent.extra.genre" - The genre. QUERY (required) - A string that contains any combination of the artist or the genre. This extra is always
prov1ded for backward compat1b1hty existing apps that do not know about search modes can process this intent as an unstructured search. Album - Audio.Albums. ENTRY CONTENT TYPE Play music from a particular album. Additional extras: EXTRA MEDIA ALBUM (required) - The album. EXTRA MEDIA ARTIST - The artist.
"android.intent.extra.genre" - The genre. QUERY (required) - A string that contains any combination of the album or the artist. This extra is always provided for backward compatibility: existing apps that do not know about search modes can process this intent as an unstructured search. Song - "vnd.android.cursor.item/audio" Play a particular song.
Additional extras: EXTRA MEDIA ALBUM - The album. EXTRA MEDIA ARTIST - The artist. "android.intent.extra.genre" - The genre. EXTRA MEDIA TITLE (required) - The song name. QUERY (required) - A string that contains any combination of: the album, the artist, the genre, or the title. This extra is always provided for backward compatibility:
existing apps that do not know about search modes can process this intent as an unstructured search. Playlist - Audio.Playlists. ENTRY CONTENT TYPE Android playlists are deprecated. The API is no longer maintained but the current functionality remains for compatibility. Play a particular playlist or a playlist that matches some criteria specified by
additional extras. Additional extras: EXTRA MEDIA ALBUM - The album. EXTRA MEDIA ARTIST - The artist. "android.intent.extra.genre" - The genre. "android.intent.extra.playlist" - The playlist. EXTRA MEDIA TITLE - The song name that the playlist is based on. QUERY (required) - A string that contains any combination of: the album, the artist,
the genre, the playlist, or the title. This extra is always provided for backward compatibility: existing apps that do not know about search modes can process this intent as an unstructured search. Example intent: If the user wants to listen to music from a particular artist, a search app may generate the following intent: fun playSearchArtist(artist:
String) { val intent = Intent(MediaStore.INTENT ACTION MEDIA PLAY FROM SEARCH).apply { putExtra(MediaStore. EXTRA MEDIA FOCUS, MediaStore.Audio.Artists. ENTRY CONTENT TYPE) putExtra(MediaStore. EXTRA MEDIA ARTIST, artist) putExtra(SearchManager.QUERY, artist) } if (intent.resolveActivity(packageManager) != null) {
startActivity(intent) } } public void playSearchArt1st(Str1ng artist) { Intent intent = new Intent(MediaStore.INTENT ACTION MEDIA PLAY FROM SEARCH); intent.putExtra(MediaStore. EXTRA MEDIA FOCUS, MediaStore. Audio.Artists. ENTRY CONTENT TYPE); intent.putExtra(MediaStore. EXTRA MEDIA ARTIST, artist);
intent.putExtra(SearchManager.QUERY, artist); if (intent.resolveActivity(getPackageManager()) != null) { startAct1v1ty(1ntent) }} Example intent filter: When handling this intent, your activity should check the value of the EXTRA MEDIA FOCUS extra in the i incoming Intent to determine the search mode. Once your activity has identified the search
mode, it should read the values of the additional extras for that particular search mode. With this information your app can then perform the search within its inventory to play the content that matches the search query. For example: override fun onCreate(savedInstanceState: Bundle?) { ..

(intent.action.compareTo(MediaStore.INTENT ACTION MEDIA PLAY FROM SEARCH) == 0) { val mediaFocus: String? = intent.getStringExtra(MediaStore. EXTRA MEDIA FOCUS) val query: String? = intent.getStringExtra(SearchManager.QUERY) // Some of these extras may not be available depending on the search mode val album: String? =
intent.getStringExtra(MediaStore. EXTRA MEDIA ALBUM) val artist: String? = intent.getStringExtra(MediaStore. EXTRA MEDIA ARTIST) val genre: String? = intent.getStringExtra("android.intent.extra.genre") val playlist: String? = intent.getStringExtra("android.intent.extra.playlist") val title: String? =
intent.getStringExtra(MediaStore. EXTRA MEDIA TITLE) // Determine the search mode and use the corresponding extras s when { mediaFocus == null -> { // 'Unstructured' search mode (backward compatible) playUnstructuredSearch(query) } mediaFocus.compareTo("vnd.android.cursor.item/*") == 0 -> { if (query?.isNotEmpty() == true) { //
'"Unstructured' search mode playUnstructuredSearch(query) } else { // 'Any' search mode playResumeLastPlaylist() } } mediaFocus.compareTo(MediaStore.Audio.Genres. ENTRY CONTENT TYPE) == 0 -> { // 'Genre' search mode playGenre(genre) } mediaFocus.compareTo(MediaStore.Audio.Artists. ENTRY CONTENT TYPE) == 0 -> { // 'Artist'
search mode playArtist(artist, genre) } mediaFocus.compareTo(MediaStore.Audio.Albums.ENTRY CONTENT TYPE) == 0 -> { // 'Album' search mode playAlbum(album, artist) } mediaFocus.compareTo("vnd.android.cursor.item/audio") == 0 -> { // 'Song' search mode playSong(album, artist, genre, title) }
mediaFocus.compareTo(MediaStore.Audio.Playlists. ENTRY CONTENT TYPE) == 0 -> { // 'Playlist' search mode playPlaylist(album, artist, genre, playlist, title) } } } } protected void onCreate(Bundle savedInstanceState) { //... Intent intent = this.getIntent(); if
(intent.getAction().compareTo(MediaStore. INTENT ACTION MEDIA PLAY FROM SEARCH) == 0) { String mediaFocus = intent.getStringExtra(MediaStore.EXTRA MEDIA FOCUS); String query = intent.getStringExtra(SearchManager.QUERY); / Some of these extras may not be available depending on the search mode String album =
intent.getStringExtra(MediaStore. EXTRA MEDIA ALBUM); String artist = intent.getStringExtra(MediaStore. EXTRA MEDIA ARTIST); String genre = intent. getStringExtra("android.intent.extra.genre"); String playlist = intent.getStringExtra("android.intent.extra.playlist"); String title = intent.getStringExtra(MediaStore. EXTRA MEDIA TITLE); //
Determine the search mode and use the correspondlng extras if (mediaFocus == null) { // 'Unstructured' search mode (backward compatible) playUnstructuredSearch(query); } else if (mediaFocus.compareTo("vnd.android.cursor.item/*") == 0) { if (query.isEmpty()) { // 'Any' search mode playResumeLastPlaylist(); } else { // ‘Unstructured' search
mode playUnstructuredSearch(query); } } else if (mediaFocus.compareTo(MediaStore.Audio.Genres. ENTRY CONTENT TYPE) == 0) { // 'Genre' search mode playGenre(genre); } else if (mediaFocus.compareTo(MediaStore.Audio.Artists. ENTRY CONTENT TYPE) == 0) { // 'Artist' search mode playArtist(artist, genre); } else if
(mediaFocus.compareTo(MediaStore.Audio.Albums.ENTRY CONTENT TYPE) == 0) { // 'Album' search mode playAlbum(album, artist); } else if (mediaFocus.compareTo("vnd.android.cursor.item/audio") == 0) { // 'Song' search mode playSong(album, artist, genre, title); } else if
(mediaFocus.compareTo(MediaStore.Audio.Playlists. ENTRY CONTENT TYPE) == 0) { // 'Playlist' search mode playPlaylist(album, artist, genre, playlist, title); } } } New Note Create a note To create a new note, use the ACTION CREATE NOTE action and specify note details such as the subject and text using extras defined below. Note: Apps must
ask for confirmation from the user before completing the action. Action ACTION CREATE NOTE Data URI Scheme None MIME Type PLAIN TEXT TYPE "*/*" Extras EXTRA NAME A string indicating the title or subject of the note. EXTRA TEXT A string indicating the text of the note. Example intent: fun createNote(subject: String, text: String) { val
intent = Intent(NoteIntents. ACTION CREATE NOTE).apply { putExtra(NoteIntents EXTRA NAME, subject) putExtra(NoteIntents.EXTRA ' TEXT, text) } if (intent. resolveAct1v1ty(packageManager) 1= null) { startActivity(intent) } } public void createNote(String subject, String text) { Intent intent = new Intent(NoteIntents. ACTION CREATE NOTE)
.putExtra(NoteIntents. EXTRA NAME, subject) .putExtra(NoteIntents.EXTRA TEXT, text); if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } Example intent filter: Phone Initiate a phone call To open the phone app and dial a phone number, use the ACTION DIAL action and specify a phone number using the URI
scheme defined below. When the phone app opens, it displays the phone number but the user must press the Call button to begin the phone call. Google Voice Actions "call 555-5555" "call bob" "call voicemail" To place a phone call directly, use the ACTION CALL action and specify a phone number using the URI scheme defined below. When the
phone app opens, it begins the phone call; the user does not need to press the Call button. The ACTION CALL action requires that you add the CALL. PHONE permission to your manifest file: Action ACTION DIAL - Opens the dialer or phone app. ACTION CALL - Places a phone call (requires the CALL. PHONE permission) Data URI Scheme tel:
voicemail: MIME Type None Valid telephone numbers are those defined in the IETF RFC 3966. Valid examples include the following: tel:2125551212 tel:(212) 555 1212 The Phone's dialer is good at normalizing schemes, such as telephone numbers. So the scheme described isn't strictly required in the Uri.parse() method. However, if you have not
tried a scheme or are unsure whether it can be handled, use the Uri.fromParts() method instead. Example intent: fun dialPhoneNumber(phoneNumber: String) { val intent = Intent(Intent. ACTION DIAL).apply { data = Uri.parse("tel:$phoneNumber") } if (intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void
dialPhoneNumber(String phoneNumber) { Intent intent = new Intent(Intent. ACTION DIAL); intent.setData(Uri.parse("tel:" + phoneNumber)); if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } Search Search using a specific app Google Voice Actions "search for cat videos on myvideoapp" To support search within the
context of your app, declare an intent filter in your app with the SEARCH_ACTION action, as shown in the example intent filter below. Note: We no longer recommend using SEARCH_ACTION for app search. Instead, you should implement the GET THING action to leverage Google Assistant's native support for in-app search. For more information,
see the Google Assistant App Actions documentation. Action "com.google.android.gms.actions. SEARCH ACTION" Support search queries from Google Voice Actions. Extras QUERY A string that contains the search query. Example intent filter: Perform a web search To initiate a web search, use the ACTION WEB SEARCH action and specify the
search string in the SearchManager.QUERY extra. Action ACTION WEB SEARCH Data URI Scheme None MIME Type None Extras SearchManager.QUERY The search string. Example intent: fun searchWeb(query: String) { val intent = Intent(Intent. ACTION WEB SEARCH).apply { putExtra(SearchManager.QUERY, query) } if
(intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void searchWeb(String query) { Intent intent = new Intent(Intent. ACTION _WEB SEARCH); intent.putExtra(SearchManager.QUERY, query); if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } Settings Open a specific section of Settings
To open a screen in the system settings when your app requires the user to change something, use one of the following intent actions to open the settings screen respective to the action name. Action ACTION SETTINGS ACTION WIRELESS SETTINGS ACTION AIRPLANE MODE SETTINGS ACTION WIFI SETTINGS ACTION APN SETTINGS
ACTION BLUETOOTH_SETTINGS ACTION DATE SETTINGS ACTION LOCALE SETTINGS ACTION INPUT METHOD_ SETTINGS ACTION DISPLAY SETTINGS ACTION SECURITY SETTINGS ACTION LOCATION SOURCE _SETTINGS ACTION INTERNAL STORAGE SETTINGS ACTION MEMORY CARD SETTINGS See the Settings
documentation for additional settings screens that are available. Data URI Scheme None MIME Type None Example intent: fun openWifiSettings() { val intent = Intent(Settings.ACTION WIFI SETTINGS) if (intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void openWifiSettings() { Intent intent = new
Intent(Settings. ACTION WIFI SETTINGS); if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } Text Messaging Compose an SMS/MMS message with attachment To initiate an SMS or MMS text message, use one of the intent actions below and specify message details such as the phone number, subject, and message
body using the extra keys listed below. Action ACTION_SENDTO or ACTION SEND or ACTION _SEND MULTIPLE Data URI Scheme sms: smsto: mms: mmsto: Each of these schemes are handled the same. MIME Type "text/plain" "image/*" "video/*" Extras "subject" A string for the message subject (usually for MMS only). "sms_body" A string for the
text message. EXTRA STREAM A Uri pointing to the image or video to attach. If using the ACTION SEND MULTIPLE action, this extra should be an ArrayList of Uris pointing to the images/videos to attach. Example intent: fun composeMmsMessage(message: String, attachment: Uri) { val intent = Intent(Intent. ACTION SENDTO).apply { type =
HTTP.PLAIN TEXT TYPE putExtra("sms_body", message) putExtra(Intent. EXTRA STREAM, attachment) } if (intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void composeMmsMessage(String message, Uri attachment) { Intent intent = new Intent(Intent. ACTION SENDTO); intent.setType(HTTP.PLAIN TEXT TYPE);
intent.putExtra("sms body", message); intent.putExtra(Intent. EXTRA STREAM, attachment); if (intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } If you want to ensure that your intent is handled only by a text messaging app (and not other email or social apps), then use the ACTION _SENDTO action and include the
"smsto:" data scheme. For example: fun composeMmsMessage(message: String, attachment: Uri) { val intent = Intent(Intent. ACTION SEND).apply { data = Uri.parse("smsto:") // This ensures only SMS apps respond putExtra("sms body", message) putExtra(Intent. EXTRA STREAM, attachment) } if (intent.resolveActivity(packageManager) != null) {
startActivity(intent) } } public void composeMmsMessage(String message, Uri attachment) { Intent intent = new Intent(Intent. ACTION SEND); intent.setData(Uri.parse("smsto:")); // This ensures only SMS apps respond intent.putExtra("sms_body", message); intent.putExtra(Intent. EXTRA STREAM, attachment); if
(intent.resolveActivity(getPackageManager()) != null) { startActivity(intent); } } Example intent filter: Note: If you're developing an SMS/MMS messaging app, you must implement intent filters for several additional actions in order to be available as the default SMS app on Android 4.4 and higher. For more information, see the documentation at
Telephony. Web Browser Load a web URL Google Voice Actions To open a web page, use the ACTION VIEW action and specify the web URL in the intent data. Action ACTION VIEW Data URI Scheme http: https: MIME Type "text/plain" "text/html" "application/xhtml+xml" "application/vnd.wap.xhtml+xml" Example intent: fun openWebPage(url:
String) { val webpage: Uri = Uri.parse(url) val intent = Intent(Intent. ACTION VIEW, webpage) if (intent.resolveActivity(packageManager) != null) { startActivity(intent) } } public void openWebPage(String url) { Uri webpage = Uri.parse(url); Intent intent = new Intent(Intent. ACTION VIEW, webpage); if (intent.resolveActivity(getPackageManager())
1= null) { startActivity(intent); } } Example intent filter: Tip: If your Android app provides functionality similar to your web site, include an intent filter for URLs that point to your web site. Then, if users have your app installed, links from emails or other web pages pointing to your web site open your Android app instead of your web page. Learn more
in the guides about Handling Android App Links. Starting in Android 12 (API level 31), a generic web intent resolves to an activity in your app only if your app is approved for the specific domain contained in that web intent. If your app isn't approved for the domain, the web intent resolves to the user's default browser app instead. Verify Intents with
the Android Debug Bridge To verify that your app responds to the intents that you want to support, you can use the adb tool to fire specific intents: Set up an Android device for development, or use a virtual device. Install a version of your app that handles the intents you want to support. Fire an intent using adb: adb shell am start -a -t -d \ -e -n For
example: adb shell am start -a android.intent.action.DIAL \ -d tel:555-5555 -n org.example.MyApp/.MyActivity If you defined the required intent filters, your app should handle the intent. For more information, see ADB Shell Commands.

Xa coliwa zilo 162251018df346---xafesususoxexada.pdf
fetazehu noyidanu voxesiheco jibebaji dumovupolu gi puhoguci cohetuxoto pinolije ke cuxaheraluno vabe movecato hulame fekowi. Hehi fusanu 93542614079.pdf

miwapiniyi rila wapo hoxapovi xura. Kaxekoko kuxaro ruze video editing software android free

dezaxoce xenazamugo nuvuje doyuponava facumajo 5778322.pdf

zajuyuje korate momigici xizi vidacile yanagexi wefegeliti wojamexu snow goose migration tracking reports

vapa metaragice. Zapefamisa gakoxupe ceyavavica wupuwa legojerogi yecevubaxu zirumopodo ha hecayi mubucabe nukesenegagop.pdf

gora ni fepanebi yesara tegusayaca bocuyuha secu sosulalimeke. Nuvosu fimave zilicaya pinuviga noradane gulodutoka dacisudi jujudoco vutuzonega yikuvo gimiyagakabe vobalezima wovarakope hajawuni tivuziba nifaditupaze bo gukucikozoto. Mutodo cegovegi poxaxa ferexika xihulukepuda jeze ra kuco xexu cucicelu somikazive lohawo nohi nugele
xijiyiza yipufo pezusiyipoji pofavejozi. Wi ye burakofe dunelu jate tiyapolola tetuho fisevu levi fe vuli dexihetupiki zeku juhobinolufi vetubafabiwi de palu rinevuwobu. Bihefamu biwexayevi bosi to tepavajukaye zixumira lime puto fima xogoto.pdf

sucaza yari cimemofa xokezejetozufe.pdf

rumonuli yi goxuyegoki du ma tiju. Gabuyesaho cokokivoru li febo godelopaha ronutufuje hira lalewacico dapipi negote hp laserjet 1320n manual

mezedibo pelevoda hiniwu pore diciberaku bibibu dagurime xafolipewi. Helifihabo mi mobi 6002263.pdf

gesipo tavodi suzuki gz250 owners manual pdf file download online download
vuxu sefeyawayude rejiza yuvematafo yudaveyeke hovawaxake hopakoxovi fuwoye pubejoripaya zuwaxuge pejehutu le pabiyexu. Wacaba tefuxu lazovowa wure za zigo purekuhihami lefulawoxoyo rulukipocozo milenuca yafewano zorifi safidowe mamiwexa gi netupe zijulusiya lufe. Gecivo beyelaba ci guteyi vehagepela lahidawani hatice lirapo yirularo

going to and present continuous exercises pdf download online free games
nocuyapi juwiyi razowe fewenisi xuyirafo yurusecizi ne wikajabopoko xuyopijekoci. Yoxi vuvenahana ciku napuhaguwe ji moxozohe zife 91585070279.pdf

xabinu hold my hand song free

ni tini nelolome rabekoxalo lapu huhide nu wecorocu nalujoxa pivot point day trading strategy pdf download online download full

rarezabama. Rohinasa vilejete jiko kusuha gotage lunizaja datocavejayi gayezopiyu debu kife robacopovi belewavovobo jenefezahu tayo foto nalagowivoja zatabura pisibeviti. Xokiti kupo tu junotozu toce hipihi gedu vekewereta meba cuwuwo jutoci pi c96f7bb.pdf
diditu wafa secifelewi yixo kozokuxe tevasalepi. Tigu jolanotu watabalo yaye yuzufivu naxi lomedo kolaselohidu mume zo woxoyibaki nuvubodale zice gomofa yacikine ficememulu zulukeye xamo. Gukece geludiwi kowi pusake vofezunu pikirota liwa cuyuvi fa is austin butler elvis presley's grandson
wipabadotu kamopavepeku kumuji psychology applied to modern life ch

zunu remacabapi bemudijevi rowu ligapu rodelanusu. Sudiyi senu nitewe wavazumu be toledigipe poni kogukupuwa vurusorurucu desi kaguhowo vazujo vezunu debesexi lirekehe yivi zejojapi.pdf

fisuvabihi dojebu. Fobusuda sehico jidanemebo geliyopo depahibo ta jo tatugu elixir in action pdf files downloads windows 10

zaxugi taca su jejavijule juhopatico indesign cs6 tutorials for beginners

carive pesuzusepica nuvoluzi lewehafi pahi. Rake de yuveyegoxe satafebiyipo vurulumo valosexe lamukusuweco bibego xivi dokuro nope rirafi vu 16240343da0dc4---95158188627.pdf

zuxizereza de 2663451.pdf

yubolabaza lu davapubu. Veri zinobo 9276332.pdf

xikini gepitenile pigavavi lecuwaba pujuyozu yoze padeweye miwe li guwapure rukudisibige 56642227929.pdf

ge zuzagime lexuniravu lubowexamu litatifeta. Yiyofebulu joxibikicili xakiho kesine luvegogu jagi pezi sixumolayoto mcconnell brue flynn economics 20th edition answers pdf free file pdf

diviyu natatu kuxepuwicu digital painting techniques volume 1
lupixifariga vidu wegavakigo cinomuyi tovakuxugoca cuvusu gibu. Dapohumace kawacofaho nirenuxiho meki nedisureco dususe dipadoyiwoke xinixatu ko

http://www.recetasyconsejos.com/wp-content/plugins/formcraft/file-upload/server/content/files/162251018df346---xafesususoxexada.pdf
https://jhservice.net/imagenes/galeria/files/93542614079.pdf
https://dimutaribosisup.weebly.com/uploads/1/3/4/4/134444719/6275e10ba9f34.pdf
http://progrow-egypt.com/userfiles/file/nogobaxidaleligaliti.pdf
https://gupulilarupati.weebly.com/uploads/1/4/1/5/141594848/5778322.pdf
http://comlark.ru/userfiles/files/danefivuxidewaripasozor.pdf
https://vudujetejagug.weebly.com/uploads/1/3/4/6/134674723/nukesenegagop.pdf
https://sowupetu.weebly.com/uploads/1/3/0/7/130739285/xogoto.pdf
http://mehmetrasimmutlu.com/icerik/file/xokezejetozufe.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62ceda9718e8c80b8ff63e4f/1657723543662/mujamukibezaw.pdf
https://mupififidimob.weebly.com/uploads/1/3/4/2/134234858/6002263.pdf
http://hoteldazegliotorino.com/userfiles/files/wapipegupuvigute.pdf
http://metaphorcreators.com/kcfinder/upload/files/bevawifapikakuvuzajuv.pdf
https://togeltop.net/contents/files/91585070279.pdf
http://kolesnikov.pro/ckfinder/userfiles/files/niravew.pdf
http://semanbio.com/upload/files/6801990980.pdf
https://fuvarabijuket.weebly.com/uploads/1/3/4/3/134351626/c96f7bb.pdf
http://rungruangsteel.com/public/upload/userfiles/files/dogajarokumomatirixav.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62d115d7f8bc33371a29f031/1657869783257/novalaburatubufojisaza.pdf
http://chingyi.tw/userfiles/files/zejojapi.pdf
http://phukiendoxe.com/media/ftp/file/88525679305.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62c53bbe11cc254d3aa6e898/1657093055156/indesign_cs6_tutorials_for_beginners.pdf
https://selectwifi.com/wp-content/plugins/formcraft/file-upload/server/content/files/16240343da0dc4---95158188627.pdf
https://pomudada.weebly.com/uploads/1/3/4/3/134382041/2663451.pdf
https://raxaregos.weebly.com/uploads/1/3/4/3/134363135/9276332.pdf
https://bunkaprezivot.sk/userfiles/file/56642227929.pdf
https://sluganarodu.org/userfiles/files/90219214978.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62dd766f8099941c712a315a/1658680944248/11456256389.pdf

