
Android	get	thumbnail	from	video	url

http://gluvoob.com/c3?utm_term=android+get+thumbnail+from+video+url

How	to	get	thumbnail	from	video	url	in	android	using	picasso.	How	to	get	thumbnail	from	video	url	in	android	using	glide.	How	to	get	thumbnail	from	server	video	url	in	android	github.	How	to	get	thumbnail	from	server	video	url	in	android.	How	to	get	thumbnail	from	youtube	video	url	in	android.	Get	thumbnail	from	video	url	android	github.

An	intent	allows	you	to	start	an	activity	in	another	app	by	describing	a	simple	action	you'd	like	to	perform	(such	as	"view	a	map"	or	"take	a	picture")	in	an	Intent	object.	This	type	of	intent	is	called	an	implicit	intent	because	it	does	not	specify	the	app	component	to	start,	but	instead	specifies	an	action	and	provides	some	data	with	which	to	perform	the
action.	When	you	call	startActivity()	or	startActivityForResult()	and	pass	it	an	implicit	intent,	the	system	resolves	the	intent	to	an	app	that	can	handle	the	intent	and	starts	its	corresponding	Activity.	If	there's	more	than	one	app	that	can	handle	the	intent,	the	system	presents	the	user	with	a	dialog	to	pick	which	app	to	use.	This	page	describes	several
implicit	intents	that	you	can	use	to	perform	common	actions,	organized	by	the	type	of	app	that	handles	the	intent.	Each	section	also	shows	how	you	can	create	an	intent	filter	to	advertise	your	app's	ability	to	perform	the	same	action.	Caution:	If	there	are	no	apps	on	the	device	that	can	receive	the	implicit	intent,	your	app	will	crash	when	it	calls
startActivity().	To	first	verify	that	an	app	exists	to	receive	the	intent,	call	resolveActivity()	on	your	Intent	object.	If	the	result	is	non-null,	there	is	at	least	one	app	that	can	handle	the	intent	and	it's	safe	to	call	startActivity().	If	the	result	is	null,	you	should	not	use	the	intent	and,	if	possible,	you	should	disable	the	feature	that	invokes	the	intent.	If	you're
not	familiar	with	how	to	create	intents	or	intent	filters,	you	should	first	read	Intents	and	Intent	Filters.	To	create	a	new	alarm,	use	the	ACTION_SET_ALARM	action	and	specify	alarm	details	such	as	the	time	and	message	using	extras	defined	below.Note:	Only	the	hour,	minutes,	and	message	extras	are	available	in	Android	2.3	(API	level	9)	and	lower.
The	other	extras	were	added	in	later	versions	of	the	platform.	fun	createAlarm(message:	String,	hour:	Int,	minutes:	Int)	{	val	intent	=	Intent(AlarmClock.ACTION_SET_ALARM).apply	{	putExtra(AlarmClock.EXTRA_MESSAGE,	message)	putExtra(AlarmClock.EXTRA_HOUR,	hour)	putExtra(AlarmClock.EXTRA_MINUTES,	minutes)	}	if
(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	createAlarm(String	message,	int	hour,	int	minutes)	{	Intent	intent	=	new	Intent(AlarmClock.ACTION_SET_ALARM)	.putExtra(AlarmClock.EXTRA_MESSAGE,	message)	.putExtra(AlarmClock.EXTRA_HOUR,	hour)	.putExtra(AlarmClock.EXTRA_MINUTES,	minutes);
if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	To	create	a	countdown	timer,	use	the	ACTION_SET_TIMER	action	and	specify	timer	details	such	as	the	duration	using	extras	defined	below.	Note:	This	intent	was	added	in	Android	4.4	(API	level	19).	fun	startTimer(message:	String,	seconds:	Int)	{	val	intent	=
Intent(AlarmClock.ACTION_SET_TIMER).apply	{	putExtra(AlarmClock.EXTRA_MESSAGE,	message)	putExtra(AlarmClock.EXTRA_LENGTH,	seconds)	putExtra(AlarmClock.EXTRA_SKIP_UI,	true)	}	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	startTimer(String	message,	int	seconds)	{	Intent	intent	=	new
Intent(AlarmClock.ACTION_SET_TIMER)	.putExtra(AlarmClock.EXTRA_MESSAGE,	message)	.putExtra(AlarmClock.EXTRA_LENGTH,	seconds)	.putExtra(AlarmClock.EXTRA_SKIP_UI,	true);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	Although	not	many	apps	will	invoke	this	intent	(it's	primarily	used	by	system
apps),	any	app	that	behaves	as	an	alarm	clock	should	implement	this	intent	filter	and	respond	by	showing	the	list	of	current	alarms.Note:	This	intent	was	added	in	Android	4.4	(API	level	19).To	add	a	new	event	to	the	user's	calendar,	use	the	ACTION_INSERT	action	and	specify	the	data	URI	with	Events.CONTENT_URI.	You	can	then	specify	various
event	details	using	extras	defined	below.	fun	addEvent(title:	String,	location:	String,	begin:	Long,	end:	Long)	{	val	intent	=	Intent(Intent.ACTION_INSERT).apply	{	data	=	Events.CONTENT_URI	putExtra(Events.TITLE,	title)	putExtra(Events.EVENT_LOCATION,	location)	putExtra(CalendarContract.EXTRA_EVENT_BEGIN_TIME,	begin)
putExtra(CalendarContract.EXTRA_EVENT_END_TIME,	end)	}	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	addEvent(String	title,	String	location,	long	begin,	long	end)	{	Intent	intent	=	new	Intent(Intent.ACTION_INSERT)	.setData(Events.CONTENT_URI)	.putExtra(Events.TITLE,	title)
.putExtra(Events.EVENT_LOCATION,	location)	.putExtra(CalendarContract.EXTRA_EVENT_BEGIN_TIME,	begin)	.putExtra(CalendarContract.EXTRA_EVENT_END_TIME,	end);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	To	open	a	camera	app	and	receive	the	resulting	photo	or	video,	use	the
ACTION_IMAGE_CAPTURE	or	ACTION_VIDEO_CAPTURE	action.	Also	specify	the	URI	location	where	you'd	like	the	camera	to	save	the	photo	or	video,	in	the	EXTRA_OUTPUT	extra.When	the	camera	app	successfully	returns	focus	to	your	activity	(your	app	receives	the	onActivityResult()	callback),	you	can	access	the	photo	or	video	at	the	URI	you
specified	with	the	EXTRA_OUTPUT	value.Note:	When	you	use	ACTION_IMAGE_CAPTURE	to	capture	a	photo,	the	camera	may	also	return	a	downscaled	copy	(a	thumbnail)	of	the	photo	in	the	result	Intent,	saved	as	a	Bitmap	in	an	extra	field	named	"data".	const	val	REQUEST_IMAGE_CAPTURE	=	1	val	locationForPhotos:	Uri	=	...	fun
capturePhoto(targetFilename:	String)	{	val	intent	=	Intent(MediaStore.ACTION_IMAGE_CAPTURE).apply	{	putExtra(MediaStore.EXTRA_OUTPUT,	Uri.withAppendedPath(locationForPhotos,	targetFilename))	}	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivityForResult(intent,	REQUEST_IMAGE_CAPTURE)	}	}	override	fun
onActivityResult(requestCode:	Int,	resultCode:	Int,	data:	Intent)	{	if	(requestCode	==	REQUEST_IMAGE_CAPTURE	&&	resultCode	==	Activity.RESULT_OK)	{	val	thumbnail:	Bitmap	=	data.getParcelableExtra("data")	//	Do	other	work	with	full	size	photo	saved	in	locationForPhotos	...	}	}	static	final	int	REQUEST_IMAGE_CAPTURE	=	1;	static	final	Uri
locationForPhotos;	public	void	capturePhoto(String	targetFilename)	{	Intent	intent	=	new	Intent(MediaStore.ACTION_IMAGE_CAPTURE);	intent.putExtra(MediaStore.EXTRA_OUTPUT,	Uri.withAppendedPath(locationForPhotos,	targetFilename));	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivityForResult(intent,
REQUEST_IMAGE_CAPTURE);	}	}	@Override	protected	void	onActivityResult(int	requestCode,	int	resultCode,	Intent	data)	{	if	(requestCode	==	REQUEST_IMAGE_CAPTURE	&&	resultCode	==	RESULT_OK)	{	Bitmap	thumbnail	=	data.getParcelableExtra("data");	//	Do	other	work	with	full	size	photo	saved	in	locationForPhotos	...	}	}	To	do	this	when
working	beyond	Anroid	11,	refer	to	the	example	intent	below.	val	REQUEST_IMAGE_CAPTURE	=	1	private	fun	dispatchTakePictureIntent()	{	val	takePictureIntent	=	Intent(MediaStore.ACTION_IMAGE_CAPTURE)	try	{	startActivityForResult(takePictureIntent,	REQUEST_IMAGE_CAPTURE)	}	catch	(e:	ActivityNotFoundException)	{	//	display	error
state	to	the	user	}	}	static	final	int	REQUEST_IMAGE_CAPTURE	=	1;	private	void	dispatchTakePictureIntent()	{	Intent	takePictureIntent	=	new	Intent(MediaStore.ACTION_IMAGE_CAPTURE);	try	{	startActivityForResult(takePictureIntent,	REQUEST_IMAGE_CAPTURE);	}	catch	(ActivityNotFoundException	e)	{	//	display	error	state	to	the	user	}	}
For	more	information	about	how	to	use	this	intent	to	capture	a	photo,	including	how	to	create	an	appropriate	Uri	for	the	output	location,	read	Taking	Photos	Simply	or	Taking	Videos	Simply.	Example	intent	filter:	When	handling	this	intent,	your	activity	should	check	for	the	EXTRA_OUTPUT	extra	in	the	incoming	Intent,	then	save	the	captured	image	or
video	at	the	location	specified	by	that	extra	and	call	setResult()	with	an	Intent	that	includes	a	compressed	thumbnail	in	an	extra	named	"data".	Start	a	camera	app	in	still	image	mode	Google	Voice	Actions	To	open	a	camera	app	in	still	image	mode,	use	the	INTENT_ACTION_STILL_IMAGE_CAMERA	action.	Action
INTENT_ACTION_STILL_IMAGE_CAMERA	Data	URI	Scheme	None	MIME	Type	None	Extras	None	Example	intent:	private	fun	dispatchTakePictureIntent()	{	val	takePictureIntent	=	Intent(MediaStore.ACTION_IMAGE_CAPTURE)	try	{	startActivityForResult(takePictureIntent,	REQUEST_IMAGE_CAPTURE)	}	catch	(e:	ActivityNotFoundException)	{	//
display	error	state	to	the	user	}	}	public	void	capturePhoto(String	targetFilename)	{	Intent	intent	=	new	Intent(MediaStore.ACTION_IMAGE_CAPTURE);	intent.putExtra(MediaStore.EXTRA_OUTPUT,	Uri.withAppendedPath(locationForPhotos,	targetFilename));	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivityForResult(intent,
REQUEST_IMAGE_CAPTURE);	}	}	Example	intent	filter:	Start	a	camera	app	in	video	mode	Google	Voice	Actions	To	open	a	camera	app	in	video	mode,	use	the	INTENT_ACTION_VIDEO_CAMERA	action.	Action	INTENT_ACTION_VIDEO_CAMERA	Data	URI	Scheme	None	MIME	Type	None	Extras	None	Example	intent:	fun	capturePhoto()	{	val	intent	=
Intent(MediaStore.INTENT_ACTION_VIDEO_CAMERA)	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivityForResult(intent,	REQUEST_IMAGE_CAPTURE)	}	}	public	void	capturePhoto()	{	Intent	intent	=	new	Intent(MediaStore.INTENT_ACTION_VIDEO_CAMERA);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{
startActivityForResult(intent,	REQUEST_IMAGE_CAPTURE);	}	}	Example	intent	filter:	To	have	the	user	select	a	contact	and	provide	your	app	access	to	all	the	contact	information,	use	the	ACTION_PICK	action	and	specify	the	MIME	type	to	Contacts.CONTENT_TYPE.	The	result	Intent	delivered	to	your	onActivityResult()	callback	contains	the	content:
URI	pointing	to	the	selected	contact.	The	response	grants	your	app	temporary	permissions	to	read	that	contact	using	the	Contacts	Provider	API	even	if	your	app	does	not	include	the	READ_CONTACTS	permission.	Tip:	If	you	need	access	to	only	a	specific	piece	of	contact	information,	such	as	a	phone	number	or	email	address,	instead	see	the	next
section	about	how	to	select	specific	contact	data.	Action	ACTION_PICK	Data	URI	Scheme	None	MIME	Type	Contacts.CONTENT_TYPE	Example	intent:	const	val	REQUEST_SELECT_CONTACT	=	1	fun	selectContact()	{	val	intent	=	Intent(Intent.ACTION_PICK).apply	{	type	=	ContactsContract.Contacts.CONTENT_TYPE	}	if
(intent.resolveActivity(packageManager)	!=	null)	{	startActivityForResult(intent,	REQUEST_SELECT_CONTACT)	}	}	override	fun	onActivityResult(requestCode:	Int,	resultCode:	Int,	data:	Intent)	{	if	(requestCode	==	REQUEST_SELECT_CONTACT	&&	resultCode	==	RESULT_OK)	{	val	contactUri:	Uri	=	data.data	//	Do	something	with	the	selected
contact	at	contactUri	//...	}	}	static	final	int	REQUEST_SELECT_CONTACT	=	1;	public	void	selectContact()	{	Intent	intent	=	new	Intent(Intent.ACTION_PICK);	intent.setType(ContactsContract.Contacts.CONTENT_TYPE);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivityForResult(intent,	REQUEST_SELECT_CONTACT);	}	}
@Override	protected	void	onActivityResult(int	requestCode,	int	resultCode,	Intent	data)	{	if	(requestCode	==	REQUEST_SELECT_CONTACT	&&	resultCode	==	RESULT_OK)	{	Uri	contactUri	=	data.getData();	//	Do	something	with	the	selected	contact	at	contactUri	...	}	}	For	information	about	how	to	retrieve	contact	details	once	you	have	the	contact
URI,	read	Retrieving	Details	for	a	Contact.	When	you	retrieve	the	contact	URI	using	the	above	intent,	you	generally	don't	need	the	READ_CONTACTS	permission	to	read	basic	details	for	that	contact,	such	as	display	name	and	whether	the	contact	is	starred.	However,	if	you're	trying	to	read	more	specific	data	about	a	given	contact—such	as	their
phone	number	or	email	address—you	need	the	READ_CONTACTS	permission.	To	have	the	user	select	a	specific	piece	of	information	from	a	contact,	such	as	a	phone	number,	email	address,	or	other	data	type,	use	the	ACTION_PICK	action	and	specify	the	MIME	type	to	one	of	the	content	types	listed	below,	such	as
CommonDataKinds.Phone.CONTENT_TYPE	to	get	the	contact's	phone	number.	Note:	In	many	cases,	your	app	needs	to	have	the	READ_CONTACTS	permission	in	order	to	view	specific	information	about	a	particular	contact.	If	you	need	to	retrieve	only	one	type	of	data	from	a	contact,	this	technique	with	a	CONTENT_TYPE	from	the
ContactsContract.CommonDataKinds	classes	is	more	efficient	than	using	the	Contacts.CONTENT_TYPE	(as	shown	in	the	previous	section)	because	the	result	provides	you	direct	access	to	the	desired	data	without	requiring	you	to	perform	a	more	complex	query	to	Contacts	Provider.	The	result	Intent	delivered	to	your	onActivityResult()	callback
contains	the	content:	URI	pointing	to	the	selected	contact	data.	The	response	grants	your	app	temporary	permissions	to	read	that	contact	data	even	if	your	app	does	not	include	the	READ_CONTACTS	permission.	Action	ACTION_PICK	Data	URI	Scheme	None	MIME	Type	CommonDataKinds.Phone.CONTENT_TYPE	Pick	from	contacts	with	a	phone
number.	CommonDataKinds.Email.CONTENT_TYPE	Pick	from	contacts	with	an	email	address.	CommonDataKinds.StructuredPostal.CONTENT_TYPE	Pick	from	contacts	with	a	postal	address.	Or	one	of	many	other	CONTENT_TYPE	values	under	ContactsContract.	Example	intent:	const	val	REQUEST_SELECT_PHONE_NUMBER	=	1	fun	selectContact()
{	//	Start	an	activity	for	the	user	to	pick	a	phone	number	from	contacts	val	intent	=	Intent(Intent.ACTION_PICK).apply	{	type	=	CommonDataKinds.Phone.CONTENT_TYPE	}	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivityForResult(intent,	REQUEST_SELECT_PHONE_NUMBER)	}	}	override	fun	onActivityResult(requestCode:	Int,
resultCode:	Int,	data:	Intent)	{	if	(requestCode	==	REQUEST_SELECT_PHONE_NUMBER	&&	resultCode	==	Activity.RESULT_OK)	{	//	Get	the	URI	and	query	the	content	provider	for	the	phone	number	val	contactUri:	Uri	=	data.data	val	projection:	Array	=	arrayOf(CommonDataKinds.Phone.NUMBER)	contentResolver.query(contactUri,	projection,
null,	null,	null).use	{	cursor	->	//	If	the	cursor	returned	is	valid,	get	the	phone	number	if	(cursor.moveToFirst())	{	val	numberIndex	=	cursor.getColumnIndex(CommonDataKinds.Phone.NUMBER)	val	number	=	cursor.getString(numberIndex)	//	Do	something	with	the	phone	number	...	}	}	}	}	static	final	int	REQUEST_SELECT_PHONE_NUMBER	=	1;
public	void	selectContact()	{	//	Start	an	activity	for	the	user	to	pick	a	phone	number	from	contacts	Intent	intent	=	new	Intent(Intent.ACTION_PICK);	intent.setType(CommonDataKinds.Phone.CONTENT_TYPE);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivityForResult(intent,	REQUEST_SELECT_PHONE_NUMBER);	}	}
@Override	protected	void	onActivityResult(int	requestCode,	int	resultCode,	Intent	data)	{	if	(requestCode	==	REQUEST_SELECT_PHONE_NUMBER	&&	resultCode	==	RESULT_OK)	{	//	Get	the	URI	and	query	the	content	provider	for	the	phone	number	Uri	contactUri	=	data.getData();	String[]	projection	=	new	String[]
{CommonDataKinds.Phone.NUMBER};	Cursor	cursor	=	getContentResolver().query(contactUri,	projection,	null,	null,	null);	//	If	the	cursor	returned	is	valid,	get	the	phone	number	if	(cursor	!=	null	&&	cursor.moveToFirst())	{	int	numberIndex	=	cursor.getColumnIndex(CommonDataKinds.Phone.NUMBER);	String	number	=
cursor.getString(numberIndex);	//	Do	something	with	the	phone	number	//...	}	}	}	To	display	the	details	for	a	known	contact,	use	the	ACTION_VIEW	action	and	specify	the	contact	with	a	content:	URI	as	the	intent	data.	There	are	primarily	two	ways	to	initially	retrieve	the	contact's	URI:	Use	the	contact	URI	returned	by	the	ACTION_PICK,	shown	in	the
previous	section	(this	approach	does	not	require	any	app	permissions).	Access	the	list	of	all	contacts	directly,	as	described	in	Retrieving	a	List	of	Contacts	(this	approach	requires	the	READ_CONTACTS	permission).	Action	ACTION_VIEW	Data	URI	Scheme	content:	MIME	Type	None.	The	type	is	inferred	from	contact	URI.	Example	intent:	fun
viewContact(contactUri:	Uri)	{	val	intent	=	Intent(Intent.ACTION_VIEW,	contactUri)	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	viewContact(Uri	contactUri)	{	Intent	intent	=	new	Intent(Intent.ACTION_VIEW,	contactUri);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}
To	edit	a	known	contact,	use	the	ACTION_EDIT	action,	specify	the	contact	with	a	content:	URI	as	the	intent	data,	and	include	any	known	contact	information	in	extras	specified	by	constants	in	ContactsContract.Intents.Insert.	There	are	primarily	two	ways	to	initially	retrieve	the	contact	URI:	Use	the	contact	URI	returned	by	the	ACTION_PICK,	shown
in	the	previous	section	(this	approach	does	not	require	any	app	permissions).	Access	the	list	of	all	contacts	directly,	as	described	in	Retrieving	a	List	of	Contacts	(this	approach	requires	the	READ_CONTACTS	permission).	Action	ACTION_EDIT	Data	URI	Scheme	content:	MIME	Type	The	type	is	inferred	from	contact	URI.	Extras	One	or	more	of	the
extras	defined	in	ContactsContract.Intents.Insert	so	you	can	populate	fields	of	the	contact	details.	Example	intent:	fun	editContact(contactUri:	Uri,	email:	String)	{	val	intent	=	Intent(Intent.ACTION_EDIT).apply	{	data	=	contactUri	putExtra(ContactsContract.Intents.Insert.EMAIL,	email)	}	if	(intent.resolveActivity(packageManager)	!=	null)	{
startActivity(intent)	}	}	public	void	editContact(Uri	contactUri,	String	email)	{	Intent	intent	=	new	Intent(Intent.ACTION_EDIT);	intent.setData(contactUri);	intent.putExtra(Intents.Insert.EMAIL,	email);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	For	more	information	about	how	to	edit	a	contact,	read	Modifying
Contacts	Using	Intents.	To	insert	a	new	contact,	use	the	ACTION_INSERT	action,	specify	Contacts.CONTENT_TYPE	as	the	MIME	type,	and	include	any	known	contact	information	in	extras	specified	by	constants	in	ContactsContract.Intents.Insert.	Action	ACTION_INSERT	Data	URI	Scheme	None	MIME	Type	Contacts.CONTENT_TYPE	Extras	One	or
more	of	the	extras	defined	in	ContactsContract.Intents.Insert.	Example	intent:	fun	insertContact(name:	String,	email:	String)	{	val	intent	=	Intent(Intent.ACTION_INSERT).apply	{	type	=	ContactsContract.Contacts.CONTENT_TYPE	putExtra(ContactsContract.Intents.Insert.NAME,	name)	putExtra(ContactsContract.Intents.Insert.EMAIL,	email)	}	if
(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	insertContact(String	name,	String	email)	{	Intent	intent	=	new	Intent(Intent.ACTION_INSERT);	intent.setType(Contacts.CONTENT_TYPE);	intent.putExtra(Intents.Insert.NAME,	name);	intent.putExtra(Intents.Insert.EMAIL,	email);	if
(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	For	more	information	about	how	to	insert	a	contact,	read	Modifying	Contacts	Using	Intents.	Email	Compose	an	email	with	optional	attachments	To	compose	an	email,	use	one	of	the	below	actions	based	on	whether	you'll	include	attachments,	and	include	email	details
such	as	the	recipient	and	subject	using	the	extra	keys	listed	below.	Action	ACTION_SENDTO	(for	no	attachment)	or	ACTION_SEND	(for	one	attachment)	or	ACTION_SEND_MULTIPLE	(for	multiple	attachments)	Data	URI	Scheme	None	MIME	Type	"text/plain"	"*/*"	Extras	Intent.EXTRA_EMAIL	A	string	array	of	all	"To"	recipient	email	addresses.
Intent.EXTRA_CC	A	string	array	of	all	"CC"	recipient	email	addresses.	Intent.EXTRA_BCC	A	string	array	of	all	"BCC"	recipient	email	addresses.	Intent.EXTRA_SUBJECT	A	string	with	the	email	subject.	Intent.EXTRA_TEXT	A	string	with	the	body	of	the	email.	Intent.EXTRA_STREAM	A	Uri	pointing	to	the	attachment.	If	using	the
ACTION_SEND_MULTIPLE	action,	this	should	instead	be	an	ArrayList	containing	multiple	Uri	objects.	Example	intent:	fun	composeEmail(addresses:	Array,	subject:	String,	attachment:	Uri)	{	val	intent	=	Intent(Intent.ACTION_SEND).apply	{	type	=	"*/*"	putExtra(Intent.EXTRA_EMAIL,	addresses)	putExtra(Intent.EXTRA_SUBJECT,	subject)
putExtra(Intent.EXTRA_STREAM,	attachment)	}	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	composeEmail(String[]	addresses,	String	subject,	Uri	attachment)	{	Intent	intent	=	new	Intent(Intent.ACTION_SEND);	intent.setType("*/*");	intent.putExtra(Intent.EXTRA_EMAIL,	addresses);
intent.putExtra(Intent.EXTRA_SUBJECT,	subject);	intent.putExtra(Intent.EXTRA_STREAM,	attachment);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	If	you	want	to	ensure	that	your	intent	is	handled	only	by	an	email	app	(and	not	other	text	messaging	or	social	apps),	then	use	the	ACTION_SENDTO	action	and
include	the	"mailto:"	data	scheme.	For	example:	fun	composeEmail(addresses:	Array,	subject:	String)	{	val	intent	=	Intent(Intent.ACTION_SENDTO).apply	{	data	=	Uri.parse("mailto:")	//	only	email	apps	should	handle	this	putExtra(Intent.EXTRA_EMAIL,	addresses)	putExtra(Intent.EXTRA_SUBJECT,	subject)	}	if
(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	composeEmail(String[]	addresses,	String	subject)	{	Intent	intent	=	new	Intent(Intent.ACTION_SENDTO);	intent.setData(Uri.parse("mailto:"));	//	only	email	apps	should	handle	this	intent.putExtra(Intent.EXTRA_EMAIL,	addresses);
intent.putExtra(Intent.EXTRA_SUBJECT,	subject);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	Example	intent	filter:	File	Storage	Retrieve	a	specific	type	of	file	To	request	that	the	user	select	a	file	such	as	a	document	or	photo	and	return	a	reference	to	your	app,	use	the	ACTION_GET_CONTENT	action	and
specify	your	desired	MIME	type.	The	file	reference	returned	to	your	app	is	transient	to	your	activity's	current	lifecycle,	so	if	you	want	to	access	it	later	you	must	import	a	copy	that	you	can	read	later.	This	intent	also	allows	the	user	to	create	a	new	file	in	the	process	(for	example,	instead	of	selecting	an	existing	photo,	the	user	can	capture	a	new	photo
with	the	camera).	The	result	intent	delivered	to	your	onActivityResult()	method	includes	data	with	a	URI	pointing	to	the	file.	The	URI	could	be	anything,	such	as	an	http:	URI,	file:	URI,	or	content:	URI.	However,	if	you'd	like	to	restrict	selectable	files	to	only	those	that	are	accessible	from	a	content	provider	(a	content:	URI)	and	that	are	available	as	a
file	stream	with	openFileDescriptor(),	you	should	add	the	CATEGORY_OPENABLE	category	to	your	intent.	On	Android	4.3	(API	level	18)	and	higher,	you	can	also	allow	the	user	to	select	multiple	files	by	adding	EXTRA_ALLOW_MULTIPLE	to	the	intent,	set	to	true.	You	can	then	access	each	of	the	selected	files	in	a	ClipData	object	returned	by
getClipData().	Action	ACTION_GET_CONTENT	Data	URI	Scheme	None	MIME	Type	The	MIME	type	corresponding	to	the	file	type	the	user	should	select.	Extras	EXTRA_ALLOW_MULTIPLE	A	boolean	declaring	whether	the	user	can	select	more	than	one	file	at	a	time.	EXTRA_LOCAL_ONLY	A	boolean	that	declares	whether	the	returned	file	must	be
available	directly	from	the	device,	rather	than	requiring	a	download	from	a	remote	service.	Category	(optional)	CATEGORY_OPENABLE	To	return	only	"openable"	files	that	can	be	represented	as	a	file	stream	with	openFileDescriptor().	Example	intent	to	get	a	photo:	const	val	REQUEST_IMAGE_GET	=	1	fun	selectImage()	{	val	intent	=
Intent(Intent.ACTION_GET_CONTENT).apply	{	type	=	"image/*"	}	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivityForResult(intent,	REQUEST_IMAGE_GET)	}	}	override	fun	onActivityResult(requestCode:	Int,	resultCode:	Int,	data:	Intent)	{	if	(requestCode	==	REQUEST_IMAGE_GET	&&	resultCode	==	Activity.RESULT_OK)	{	val
thumbnail:	Bitmap	=	data.getParcelableExtra("data")	val	fullPhotoUri:	Uri	=	data.data	//	Do	work	with	photo	saved	at	fullPhotoUri	...	}	}	static	final	int	REQUEST_IMAGE_GET	=	1;	public	void	selectImage()	{	Intent	intent	=	new	Intent(Intent.ACTION_GET_CONTENT);	intent.setType("image/*");	if	(intent.resolveActivity(getPackageManager())	!=	null)
{	startActivityForResult(intent,	REQUEST_IMAGE_GET);	}	}	@Override	protected	void	onActivityResult(int	requestCode,	int	resultCode,	Intent	data)	{	if	(requestCode	==	REQUEST_IMAGE_GET	&&	resultCode	==	RESULT_OK)	{	Bitmap	thumbnail	=	data.getParcelable("data");	Uri	fullPhotoUri	=	data.getData();	//	Do	work	with	photo	saved	at
fullPhotoUri	...	}	}	Example	intent	filter	to	return	a	photo:	Open	a	specific	type	of	file	Instead	of	retrieving	a	copy	of	a	file	that	you	must	import	to	your	app	(by	using	the	ACTION_GET_CONTENT	action),	when	running	on	Android	4.4	or	higher,	you	can	instead	request	to	open	a	file	that's	managed	by	another	app	by	using	the
ACTION_OPEN_DOCUMENT	action	and	specifying	a	MIME	type.	To	also	allow	the	user	to	instead	create	a	new	document	that	your	app	can	write	to,	use	the	ACTION_CREATE_DOCUMENT	action	instead.	For	example,	instead	of	selecting	from	existing	PDF	documents,	the	ACTION_CREATE_DOCUMENT	intent	allows	users	to	select	where	they'd	like
to	create	a	new	document	(within	another	app	that	manages	the	document's	storage)—your	app	then	receives	the	URI	location	of	where	it	can	write	the	new	document.	Whereas	the	intent	delivered	to	your	onActivityResult()	method	from	the	ACTION_GET_CONTENT	action	may	return	a	URI	of	any	type,	the	result	intent	from
ACTION_OPEN_DOCUMENT	and	ACTION_CREATE_DOCUMENT	always	specify	the	chosen	file	as	a	content:	URI	that's	backed	by	a	DocumentsProvider.	You	can	open	the	file	with	openFileDescriptor()	and	query	its	details	using	columns	from	DocumentsContract.Document.	The	returned	URI	grants	your	app	long-term	read	access	to	the	file	(also
possibly	with	write	access).	So	the	ACTION_OPEN_DOCUMENT	action	is	particularly	useful	(instead	of	using	ACTION_GET_CONTENT)	when	you	want	to	read	an	existing	file	without	making	a	copy	into	your	app,	or	when	you	want	to	open	and	edit	a	file	in	place.	You	can	also	allow	the	user	to	select	multiple	files	by	adding	EXTRA_ALLOW_MULTIPLE
to	the	intent,	set	to	true.	If	the	user	selects	just	one	item,	then	you	can	retrieve	the	item	from	getData().	If	the	user	selects	more	than	one	item,	then	getData()	returns	null	and	you	must	instead	retrieve	each	item	from	a	ClipData	object	that	is	returned	by	getClipData().	Note:	Your	intent	must	specify	a	MIME	type	and	must	declare	the
CATEGORY_OPENABLE	category.	If	appropriate,	you	can	specify	more	than	one	MIME	type	by	adding	an	array	of	MIME	types	with	the	EXTRA_MIME_TYPES	extra—if	you	do	so,	you	must	set	the	primary	MIME	type	in	setType()	to	"*/*".	Action	ACTION_OPEN_DOCUMENT	or	ACTION_CREATE_DOCUMENT	Data	URI	Scheme	None	MIME	Type	The
MIME	type	corresponding	to	the	file	type	the	user	should	select.	Extras	EXTRA_MIME_TYPES	An	array	of	MIME	types	corresponding	to	the	types	of	files	your	app	is	requesting.	When	you	use	this	extra,	you	must	set	the	primary	MIME	type	in	setType()	to	"*/*".	EXTRA_ALLOW_MULTIPLE	A	boolean	that	declares	whether	the	user	can	select	more	than
one	file	at	a	time.	EXTRA_TITLE	For	use	with	ACTION_CREATE_DOCUMENT	to	specify	an	initial	file	name.	EXTRA_LOCAL_ONLY	A	boolean	that	declares	whether	the	returned	file	must	be	available	directly	from	the	device,	rather	than	requiring	a	download	from	a	remote	service.	Category	CATEGORY_OPENABLE	To	return	only	"openable"	files	that
can	be	represented	as	a	file	stream	with	openFileDescriptor().	Example	intent	to	get	a	photo:	const	val	REQUEST_IMAGE_OPEN	=	1	fun	selectImage2()	{	val	intent	=	Intent(Intent.ACTION_OPEN_DOCUMENT).apply	{	type	=	"image/*"	addCategory(Intent.CATEGORY_OPENABLE)	}	//	Only	the	system	receives	the	ACTION_OPEN_DOCUMENT,	so	no
need	to	test.	startActivityForResult(intent,	REQUEST_IMAGE_OPEN)	}	override	fun	onActivityResult(requestCode:	Int,	resultCode:	Int,	data:	Intent)	{	if	(requestCode	==	REQUEST_IMAGE_OPEN	&&	resultCode	==	Activity.RESULT_OK)	{	val	fullPhotoUri:	Uri	=	data.data	//	Do	work	with	full	size	photo	saved	at	fullPhotoUri	...	}	}	static	final	int
REQUEST_IMAGE_OPEN	=	1;	public	void	selectImage()	{	Intent	intent	=	new	Intent(Intent.ACTION_OPEN_DOCUMENT);	intent.setType("image/*");	intent.addCategory(Intent.CATEGORY_OPENABLE);	//	Only	the	system	receives	the	ACTION_OPEN_DOCUMENT,	so	no	need	to	test.	startActivityForResult(intent,	REQUEST_IMAGE_OPEN);	}
@Override	protected	void	onActivityResult(int	requestCode,	int	resultCode,	Intent	data)	{	if	(requestCode	==	REQUEST_IMAGE_OPEN	&&	resultCode	==	RESULT_OK)	{	Uri	fullPhotoUri	=	data.getData();	//	Do	work	with	full	size	photo	saved	at	fullPhotoUri	...	}	}	Third	party	apps	cannot	actually	respond	to	an	intent	with	the
ACTION_OPEN_DOCUMENT	action.	Instead,	the	system	receives	this	intent	and	displays	all	the	files	available	from	various	apps	in	a	unified	user	interface.	To	provide	your	app's	files	in	this	UI	and	allow	other	apps	to	open	them,	you	must	implement	a	DocumentsProvider	and	include	an	intent	filter	for	PROVIDER_INTERFACE
("android.content.action.DOCUMENTS_PROVIDER").	For	example:	For	more	information	about	how	to	make	the	files	managed	by	your	app	openable	from	other	apps,	read	the	Storage	Access	Framework	guide.	Local	Actions	Call	a	car	Google	Voice	Actions	"get	me	a	taxi"	"call	me	a	car"	(Wear	OS	only)	To	call	a	taxi,	use	the
ACTION_RESERVE_TAXI_RESERVATION	action.	Note:	Apps	must	ask	for	confirmation	from	the	user	before	completing	the	action.	Action	ACTION_RESERVE_TAXI_RESERVATION	Data	URI	None	MIME	Type	None	Extras	None	Example	intent:	fun	callCar()	{	val	intent	=	Intent(ReserveIntents.ACTION_RESERVE_TAXI_RESERVATION)	if
(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	callCar()	{	Intent	intent	=	new	Intent(ReserveIntents.ACTION_RESERVE_TAXI_RESERVATION);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	Example	intent	filter:	Maps	Show	a	location	on	a	map	To	open	a	map,	use	the
ACTION_VIEW	action	and	specify	the	location	information	in	the	intent	data	with	one	of	the	schemes	defined	below.	Action	ACTION_VIEW	Data	URI	Scheme	geo:latitude,longitude	Show	the	map	at	the	given	longitude	and	latitude.	Example:	"geo:47.6,-122.3"	geo:latitude,longitude?z=zoom	Show	the	map	at	the	given	longitude	and	latitude	at	a	certain
zoom	level.	A	zoom	level	of	1	shows	the	whole	Earth,	centered	at	the	given	lat,lng.	The	highest	(closest)	zoom	level	is	23.	Example:	"geo:47.6,-122.3?z=11"	geo:0,0?q=lat,lng(label)	Show	the	map	at	the	given	longitude	and	latitude	with	a	string	label.	Example:	"geo:0,0?q=34.99,-106.61(Treasure)"	geo:0,0?q=my+street+address	Show	the	location	for
"my	street	address"	(may	be	a	specific	address	or	location	query).	Example:	"geo:0,0?q=1600+Amphitheatre+Parkway%2C+CA"	Note:	All	strings	passed	in	the	geo	URI	must	be	encoded.	For	example,	the	string	1st	&	Pike,	Seattle	should	become	1st%20%26%20Pike%2C%20Seattle.	Spaces	in	the	string	can	be	encoded	with	%20	or	replaced	with	the
plus	sign	(+).	MIME	Type	None	Example	intent:	fun	showMap(geoLocation:	Uri)	{	val	intent	=	Intent(Intent.ACTION_VIEW).apply	{	data	=	geoLocation	}	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	showMap(Uri	geoLocation)	{	Intent	intent	=	new	Intent(Intent.ACTION_VIEW);
intent.setData(geoLocation);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	Example	intent	filter:	Music	or	Video	To	play	a	music	file,	use	the	ACTION_VIEW	action	and	specify	the	URI	location	of	the	file	in	the	intent	data.	Action	ACTION_VIEW	Data	URI	Scheme	file:	content:	http:	MIME	Type	"audio/*"
"application/ogg"	"application/x-ogg"	"application/itunes"	Or	any	other	that	your	app	may	require.	Example	intent:	fun	playMedia(file:	Uri)	{	val	intent	=	Intent(Intent.ACTION_VIEW).apply	{	data	=	file	}	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	playMedia(Uri	file)	{	Intent	intent	=	new
Intent(Intent.ACTION_VIEW);	intent.setData(file);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	Example	intent	filter:	Play	music	based	on	a	search	query	Google	Voice	Actions	"play	michael	jackson	billie	jean"	To	play	music	based	on	a	search	query,	use	the	INTENT_ACTION_MEDIA_PLAY_FROM_SEARCH	intent.
An	app	may	fire	this	intent	in	response	to	the	user's	voice	command	to	play	music.	The	receiving	app	for	this	intent	performs	a	search	within	its	inventory	to	match	existing	content	to	the	given	query	and	starts	playing	that	content.	This	intent	should	include	the	EXTRA_MEDIA_FOCUS	string	extra,	which	specifies	the	intended	search	mode.	For
example,	the	search	mode	can	specify	whether	the	search	is	for	an	artist	name	or	song	name.	Action	INTENT_ACTION_MEDIA_PLAY_FROM_SEARCH	Data	URI	Scheme	None	MIME	Type	None	Extras	MediaStore.EXTRA_MEDIA_FOCUS	(required)	Indicates	the	search	mode	(whether	the	user	is	looking	for	a	particular	artist,	album,	song,	or	playlist).
Most	search	modes	take	additional	extras.	For	example,	if	the	user	is	interested	in	listening	to	a	particular	song,	the	intent	might	have	three	additional	extras:	the	song	title,	the	artist,	and	the	album.	This	intent	supports	the	following	search	modes	for	each	value	of	EXTRA_MEDIA_FOCUS:	Any	-	"vnd.android.cursor.item/*"	Play	any	music.	The
receiving	app	should	play	some	music	based	on	a	smart	choice,	such	as	the	last	playlist	the	user	listened	to.	Additional	extras:	QUERY	(required)	-	An	empty	string.	This	extra	is	always	provided	for	backward	compatibility:	existing	apps	that	do	not	know	about	search	modes	can	process	this	intent	as	an	unstructured	search.	Unstructured	-
"vnd.android.cursor.item/*"	Play	a	particular	song,	album	or	genre	from	an	unstructured	search	query.	Apps	may	generate	an	intent	with	this	search	mode	when	they	can't	identify	the	type	of	content	the	user	wants	to	listen	to.	Apps	should	use	more	specific	search	modes	when	possible.	Additional	extras:	QUERY	(required)	-	A	string	that	contains	any
combination	of:	the	artist,	the	album,	the	song	name,	or	the	genre.	Genre	-	Audio.Genres.ENTRY_CONTENT_TYPE	Play	music	of	a	particular	genre.	Additional	extras:	"android.intent.extra.genre"	(required)	-	The	genre.	QUERY	(required)	-	The	genre.	This	extra	is	always	provided	for	backward	compatibility:	existing	apps	that	do	not	know	about	search
modes	can	process	this	intent	as	an	unstructured	search.	Artist	-	Audio.Artists.ENTRY_CONTENT_TYPE	Play	music	from	a	particular	artist.	Additional	extras:	EXTRA_MEDIA_ARTIST	(required)	-	The	artist.	"android.intent.extra.genre"	-	The	genre.	QUERY	(required)	-	A	string	that	contains	any	combination	of	the	artist	or	the	genre.	This	extra	is	always
provided	for	backward	compatibility:	existing	apps	that	do	not	know	about	search	modes	can	process	this	intent	as	an	unstructured	search.	Album	-	Audio.Albums.ENTRY_CONTENT_TYPE	Play	music	from	a	particular	album.	Additional	extras:	EXTRA_MEDIA_ALBUM	(required)	-	The	album.	EXTRA_MEDIA_ARTIST	-	The	artist.
"android.intent.extra.genre"	-	The	genre.	QUERY	(required)	-	A	string	that	contains	any	combination	of	the	album	or	the	artist.	This	extra	is	always	provided	for	backward	compatibility:	existing	apps	that	do	not	know	about	search	modes	can	process	this	intent	as	an	unstructured	search.	Song	-	"vnd.android.cursor.item/audio"	Play	a	particular	song.
Additional	extras:	EXTRA_MEDIA_ALBUM	-	The	album.	EXTRA_MEDIA_ARTIST	-	The	artist.	"android.intent.extra.genre"	-	The	genre.	EXTRA_MEDIA_TITLE	(required)	-	The	song	name.	QUERY	(required)	-	A	string	that	contains	any	combination	of:	the	album,	the	artist,	the	genre,	or	the	title.	This	extra	is	always	provided	for	backward	compatibility:
existing	apps	that	do	not	know	about	search	modes	can	process	this	intent	as	an	unstructured	search.	Playlist	-	Audio.Playlists.ENTRY_CONTENT_TYPE	Android	playlists	are	deprecated.	The	API	is	no	longer	maintained	but	the	current	functionality	remains	for	compatibility.	Play	a	particular	playlist	or	a	playlist	that	matches	some	criteria	specified	by
additional	extras.	Additional	extras:	EXTRA_MEDIA_ALBUM	-	The	album.	EXTRA_MEDIA_ARTIST	-	The	artist.	"android.intent.extra.genre"	-	The	genre.	"android.intent.extra.playlist"	-	The	playlist.	EXTRA_MEDIA_TITLE	-	The	song	name	that	the	playlist	is	based	on.	QUERY	(required)	-	A	string	that	contains	any	combination	of:	the	album,	the	artist,
the	genre,	the	playlist,	or	the	title.	This	extra	is	always	provided	for	backward	compatibility:	existing	apps	that	do	not	know	about	search	modes	can	process	this	intent	as	an	unstructured	search.	Example	intent:	If	the	user	wants	to	listen	to	music	from	a	particular	artist,	a	search	app	may	generate	the	following	intent:	fun	playSearchArtist(artist:
String)	{	val	intent	=	Intent(MediaStore.INTENT_ACTION_MEDIA_PLAY_FROM_SEARCH).apply	{	putExtra(MediaStore.EXTRA_MEDIA_FOCUS,	MediaStore.Audio.Artists.ENTRY_CONTENT_TYPE)	putExtra(MediaStore.EXTRA_MEDIA_ARTIST,	artist)	putExtra(SearchManager.QUERY,	artist)	}	if	(intent.resolveActivity(packageManager)	!=	null)	{
startActivity(intent)	}	}	public	void	playSearchArtist(String	artist)	{	Intent	intent	=	new	Intent(MediaStore.INTENT_ACTION_MEDIA_PLAY_FROM_SEARCH);	intent.putExtra(MediaStore.EXTRA_MEDIA_FOCUS,	MediaStore.Audio.Artists.ENTRY_CONTENT_TYPE);	intent.putExtra(MediaStore.EXTRA_MEDIA_ARTIST,	artist);
intent.putExtra(SearchManager.QUERY,	artist);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	Example	intent	filter:	When	handling	this	intent,	your	activity	should	check	the	value	of	the	EXTRA_MEDIA_FOCUS	extra	in	the	incoming	Intent	to	determine	the	search	mode.	Once	your	activity	has	identified	the	search
mode,	it	should	read	the	values	of	the	additional	extras	for	that	particular	search	mode.	With	this	information	your	app	can	then	perform	the	search	within	its	inventory	to	play	the	content	that	matches	the	search	query.	For	example:	override	fun	onCreate(savedInstanceState:	Bundle?)	{	...	if
(intent.action.compareTo(MediaStore.INTENT_ACTION_MEDIA_PLAY_FROM_SEARCH)	==	0)	{	val	mediaFocus:	String?	=	intent.getStringExtra(MediaStore.EXTRA_MEDIA_FOCUS)	val	query:	String?	=	intent.getStringExtra(SearchManager.QUERY)	//	Some	of	these	extras	may	not	be	available	depending	on	the	search	mode	val	album:	String?	=
intent.getStringExtra(MediaStore.EXTRA_MEDIA_ALBUM)	val	artist:	String?	=	intent.getStringExtra(MediaStore.EXTRA_MEDIA_ARTIST)	val	genre:	String?	=	intent.getStringExtra("android.intent.extra.genre")	val	playlist:	String?	=	intent.getStringExtra("android.intent.extra.playlist")	val	title:	String?	=
intent.getStringExtra(MediaStore.EXTRA_MEDIA_TITLE)	//	Determine	the	search	mode	and	use	the	corresponding	extras	when	{	mediaFocus	==	null	->	{	//	'Unstructured'	search	mode	(backward	compatible)	playUnstructuredSearch(query)	}	mediaFocus.compareTo("vnd.android.cursor.item/*")	==	0	->	{	if	(query?.isNotEmpty()	==	true)	{	//
'Unstructured'	search	mode	playUnstructuredSearch(query)	}	else	{	//	'Any'	search	mode	playResumeLastPlaylist()	}	}	mediaFocus.compareTo(MediaStore.Audio.Genres.ENTRY_CONTENT_TYPE)	==	0	->	{	//	'Genre'	search	mode	playGenre(genre)	}	mediaFocus.compareTo(MediaStore.Audio.Artists.ENTRY_CONTENT_TYPE)	==	0	->	{	//	'Artist'
search	mode	playArtist(artist,	genre)	}	mediaFocus.compareTo(MediaStore.Audio.Albums.ENTRY_CONTENT_TYPE)	==	0	->	{	//	'Album'	search	mode	playAlbum(album,	artist)	}	mediaFocus.compareTo("vnd.android.cursor.item/audio")	==	0	->	{	//	'Song'	search	mode	playSong(album,	artist,	genre,	title)	}
mediaFocus.compareTo(MediaStore.Audio.Playlists.ENTRY_CONTENT_TYPE)	==	0	->	{	//	'Playlist'	search	mode	playPlaylist(album,	artist,	genre,	playlist,	title)	}	}	}	}	protected	void	onCreate(Bundle	savedInstanceState)	{	//...	Intent	intent	=	this.getIntent();	if
(intent.getAction().compareTo(MediaStore.INTENT_ACTION_MEDIA_PLAY_FROM_SEARCH)	==	0)	{	String	mediaFocus	=	intent.getStringExtra(MediaStore.EXTRA_MEDIA_FOCUS);	String	query	=	intent.getStringExtra(SearchManager.QUERY);	//	Some	of	these	extras	may	not	be	available	depending	on	the	search	mode	String	album	=
intent.getStringExtra(MediaStore.EXTRA_MEDIA_ALBUM);	String	artist	=	intent.getStringExtra(MediaStore.EXTRA_MEDIA_ARTIST);	String	genre	=	intent.getStringExtra("android.intent.extra.genre");	String	playlist	=	intent.getStringExtra("android.intent.extra.playlist");	String	title	=	intent.getStringExtra(MediaStore.EXTRA_MEDIA_TITLE);	//
Determine	the	search	mode	and	use	the	corresponding	extras	if	(mediaFocus	==	null)	{	//	'Unstructured'	search	mode	(backward	compatible)	playUnstructuredSearch(query);	}	else	if	(mediaFocus.compareTo("vnd.android.cursor.item/*")	==	0)	{	if	(query.isEmpty())	{	//	'Any'	search	mode	playResumeLastPlaylist();	}	else	{	//	'Unstructured'	search
mode	playUnstructuredSearch(query);	}	}	else	if	(mediaFocus.compareTo(MediaStore.Audio.Genres.ENTRY_CONTENT_TYPE)	==	0)	{	//	'Genre'	search	mode	playGenre(genre);	}	else	if	(mediaFocus.compareTo(MediaStore.Audio.Artists.ENTRY_CONTENT_TYPE)	==	0)	{	//	'Artist'	search	mode	playArtist(artist,	genre);	}	else	if
(mediaFocus.compareTo(MediaStore.Audio.Albums.ENTRY_CONTENT_TYPE)	==	0)	{	//	'Album'	search	mode	playAlbum(album,	artist);	}	else	if	(mediaFocus.compareTo("vnd.android.cursor.item/audio")	==	0)	{	//	'Song'	search	mode	playSong(album,	artist,	genre,	title);	}	else	if
(mediaFocus.compareTo(MediaStore.Audio.Playlists.ENTRY_CONTENT_TYPE)	==	0)	{	//	'Playlist'	search	mode	playPlaylist(album,	artist,	genre,	playlist,	title);	}	}	}	New	Note	Create	a	note	To	create	a	new	note,	use	the	ACTION_CREATE_NOTE	action	and	specify	note	details	such	as	the	subject	and	text	using	extras	defined	below.	Note:	Apps	must
ask	for	confirmation	from	the	user	before	completing	the	action.	Action	ACTION_CREATE_NOTE	Data	URI	Scheme	None	MIME	Type	PLAIN_TEXT_TYPE	"*/*"	Extras	EXTRA_NAME	A	string	indicating	the	title	or	subject	of	the	note.	EXTRA_TEXT	A	string	indicating	the	text	of	the	note.	Example	intent:	fun	createNote(subject:	String,	text:	String)	{	val
intent	=	Intent(NoteIntents.ACTION_CREATE_NOTE).apply	{	putExtra(NoteIntents.EXTRA_NAME,	subject)	putExtra(NoteIntents.EXTRA_TEXT,	text)	}	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	createNote(String	subject,	String	text)	{	Intent	intent	=	new	Intent(NoteIntents.ACTION_CREATE_NOTE)
.putExtra(NoteIntents.EXTRA_NAME,	subject)	.putExtra(NoteIntents.EXTRA_TEXT,	text);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	Example	intent	filter:	Phone	Initiate	a	phone	call	To	open	the	phone	app	and	dial	a	phone	number,	use	the	ACTION_DIAL	action	and	specify	a	phone	number	using	the	URI
scheme	defined	below.	When	the	phone	app	opens,	it	displays	the	phone	number	but	the	user	must	press	the	Call	button	to	begin	the	phone	call.	Google	Voice	Actions	"call	555-5555"	"call	bob"	"call	voicemail"	To	place	a	phone	call	directly,	use	the	ACTION_CALL	action	and	specify	a	phone	number	using	the	URI	scheme	defined	below.	When	the
phone	app	opens,	it	begins	the	phone	call;	the	user	does	not	need	to	press	the	Call	button.	The	ACTION_CALL	action	requires	that	you	add	the	CALL_PHONE	permission	to	your	manifest	file:	Action	ACTION_DIAL	-	Opens	the	dialer	or	phone	app.	ACTION_CALL	-	Places	a	phone	call	(requires	the	CALL_PHONE	permission)	Data	URI	Scheme	tel:
voicemail:	MIME	Type	None	Valid	telephone	numbers	are	those	defined	in	the	IETF	RFC	3966.	Valid	examples	include	the	following:	tel:2125551212	tel:(212)	555	1212	The	Phone's	dialer	is	good	at	normalizing	schemes,	such	as	telephone	numbers.	So	the	scheme	described	isn't	strictly	required	in	the	Uri.parse()	method.	However,	if	you	have	not
tried	a	scheme	or	are	unsure	whether	it	can	be	handled,	use	the	Uri.fromParts()	method	instead.	Example	intent:	fun	dialPhoneNumber(phoneNumber:	String)	{	val	intent	=	Intent(Intent.ACTION_DIAL).apply	{	data	=	Uri.parse("tel:$phoneNumber")	}	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void
dialPhoneNumber(String	phoneNumber)	{	Intent	intent	=	new	Intent(Intent.ACTION_DIAL);	intent.setData(Uri.parse("tel:"	+	phoneNumber));	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	Search	Search	using	a	specific	app	Google	Voice	Actions	"search	for	cat	videos	on	myvideoapp"	To	support	search	within	the
context	of	your	app,	declare	an	intent	filter	in	your	app	with	the	SEARCH_ACTION	action,	as	shown	in	the	example	intent	filter	below.	Note:	We	no	longer	recommend	using	SEARCH_ACTION	for	app	search.	Instead,	you	should	implement	the	GET_THING	action	to	leverage	Google	Assistant's	native	support	for	in-app	search.	For	more	information,
see	the	Google	Assistant	App	Actions	documentation.	Action	"com.google.android.gms.actions.SEARCH_ACTION"	Support	search	queries	from	Google	Voice	Actions.	Extras	QUERY	A	string	that	contains	the	search	query.	Example	intent	filter:	Perform	a	web	search	To	initiate	a	web	search,	use	the	ACTION_WEB_SEARCH	action	and	specify	the
search	string	in	the	SearchManager.QUERY	extra.	Action	ACTION_WEB_SEARCH	Data	URI	Scheme	None	MIME	Type	None	Extras	SearchManager.QUERY	The	search	string.	Example	intent:	fun	searchWeb(query:	String)	{	val	intent	=	Intent(Intent.ACTION_WEB_SEARCH).apply	{	putExtra(SearchManager.QUERY,	query)	}	if
(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	searchWeb(String	query)	{	Intent	intent	=	new	Intent(Intent.ACTION_WEB_SEARCH);	intent.putExtra(SearchManager.QUERY,	query);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	Settings	Open	a	specific	section	of	Settings
To	open	a	screen	in	the	system	settings	when	your	app	requires	the	user	to	change	something,	use	one	of	the	following	intent	actions	to	open	the	settings	screen	respective	to	the	action	name.	Action	ACTION_SETTINGS	ACTION_WIRELESS_SETTINGS	ACTION_AIRPLANE_MODE_SETTINGS	ACTION_WIFI_SETTINGS	ACTION_APN_SETTINGS
ACTION_BLUETOOTH_SETTINGS	ACTION_DATE_SETTINGS	ACTION_LOCALE_SETTINGS	ACTION_INPUT_METHOD_SETTINGS	ACTION_DISPLAY_SETTINGS	ACTION_SECURITY_SETTINGS	ACTION_LOCATION_SOURCE_SETTINGS	ACTION_INTERNAL_STORAGE_SETTINGS	ACTION_MEMORY_CARD_SETTINGS	See	the	Settings
documentation	for	additional	settings	screens	that	are	available.	Data	URI	Scheme	None	MIME	Type	None	Example	intent:	fun	openWifiSettings()	{	val	intent	=	Intent(Settings.ACTION_WIFI_SETTINGS)	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	openWifiSettings()	{	Intent	intent	=	new
Intent(Settings.ACTION_WIFI_SETTINGS);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	Text	Messaging	Compose	an	SMS/MMS	message	with	attachment	To	initiate	an	SMS	or	MMS	text	message,	use	one	of	the	intent	actions	below	and	specify	message	details	such	as	the	phone	number,	subject,	and	message
body	using	the	extra	keys	listed	below.	Action	ACTION_SENDTO	or	ACTION_SEND	or	ACTION_SEND_MULTIPLE	Data	URI	Scheme	sms:	smsto:	mms:	mmsto:	Each	of	these	schemes	are	handled	the	same.	MIME	Type	"text/plain"	"image/*"	"video/*"	Extras	"subject"	A	string	for	the	message	subject	(usually	for	MMS	only).	"sms_body"	A	string	for	the
text	message.	EXTRA_STREAM	A	Uri	pointing	to	the	image	or	video	to	attach.	If	using	the	ACTION_SEND_MULTIPLE	action,	this	extra	should	be	an	ArrayList	of	Uris	pointing	to	the	images/videos	to	attach.	Example	intent:	fun	composeMmsMessage(message:	String,	attachment:	Uri)	{	val	intent	=	Intent(Intent.ACTION_SENDTO).apply	{	type	=
HTTP.PLAIN_TEXT_TYPE	putExtra("sms_body",	message)	putExtra(Intent.EXTRA_STREAM,	attachment)	}	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	composeMmsMessage(String	message,	Uri	attachment)	{	Intent	intent	=	new	Intent(Intent.ACTION_SENDTO);	intent.setType(HTTP.PLAIN_TEXT_TYPE);
intent.putExtra("sms_body",	message);	intent.putExtra(Intent.EXTRA_STREAM,	attachment);	if	(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	If	you	want	to	ensure	that	your	intent	is	handled	only	by	a	text	messaging	app	(and	not	other	email	or	social	apps),	then	use	the	ACTION_SENDTO	action	and	include	the
"smsto:"	data	scheme.	For	example:	fun	composeMmsMessage(message:	String,	attachment:	Uri)	{	val	intent	=	Intent(Intent.ACTION_SEND).apply	{	data	=	Uri.parse("smsto:")	//	This	ensures	only	SMS	apps	respond	putExtra("sms_body",	message)	putExtra(Intent.EXTRA_STREAM,	attachment)	}	if	(intent.resolveActivity(packageManager)	!=	null)	{
startActivity(intent)	}	}	public	void	composeMmsMessage(String	message,	Uri	attachment)	{	Intent	intent	=	new	Intent(Intent.ACTION_SEND);	intent.setData(Uri.parse("smsto:"));	//	This	ensures	only	SMS	apps	respond	intent.putExtra("sms_body",	message);	intent.putExtra(Intent.EXTRA_STREAM,	attachment);	if
(intent.resolveActivity(getPackageManager())	!=	null)	{	startActivity(intent);	}	}	Example	intent	filter:	Note:	If	you're	developing	an	SMS/MMS	messaging	app,	you	must	implement	intent	filters	for	several	additional	actions	in	order	to	be	available	as	the	default	SMS	app	on	Android	4.4	and	higher.	For	more	information,	see	the	documentation	at
Telephony.	Web	Browser	Load	a	web	URL	Google	Voice	Actions	To	open	a	web	page,	use	the	ACTION_VIEW	action	and	specify	the	web	URL	in	the	intent	data.	Action	ACTION_VIEW	Data	URI	Scheme	http:	https:	MIME	Type	"text/plain"	"text/html"	"application/xhtml+xml"	"application/vnd.wap.xhtml+xml"	Example	intent:	fun	openWebPage(url:
String)	{	val	webpage:	Uri	=	Uri.parse(url)	val	intent	=	Intent(Intent.ACTION_VIEW,	webpage)	if	(intent.resolveActivity(packageManager)	!=	null)	{	startActivity(intent)	}	}	public	void	openWebPage(String	url)	{	Uri	webpage	=	Uri.parse(url);	Intent	intent	=	new	Intent(Intent.ACTION_VIEW,	webpage);	if	(intent.resolveActivity(getPackageManager())
!=	null)	{	startActivity(intent);	}	}	Example	intent	filter:	Tip:	If	your	Android	app	provides	functionality	similar	to	your	web	site,	include	an	intent	filter	for	URLs	that	point	to	your	web	site.	Then,	if	users	have	your	app	installed,	links	from	emails	or	other	web	pages	pointing	to	your	web	site	open	your	Android	app	instead	of	your	web	page.	Learn	more
in	the	guides	about	Handling	Android	App	Links.	Starting	in	Android	12	(API	level	31),	a	generic	web	intent	resolves	to	an	activity	in	your	app	only	if	your	app	is	approved	for	the	specific	domain	contained	in	that	web	intent.	If	your	app	isn't	approved	for	the	domain,	the	web	intent	resolves	to	the	user's	default	browser	app	instead.	Verify	Intents	with
the	Android	Debug	Bridge	To	verify	that	your	app	responds	to	the	intents	that	you	want	to	support,	you	can	use	the	adb	tool	to	fire	specific	intents:	Set	up	an	Android	device	for	development,	or	use	a	virtual	device.	Install	a	version	of	your	app	that	handles	the	intents	you	want	to	support.	Fire	an	intent	using	adb:	adb	shell	am	start	-a	-t	-d	\	-e	-n	For
example:	adb	shell	am	start	-a	android.intent.action.DIAL	\	-d	tel:555-5555	-n	org.example.MyApp/.MyActivity	If	you	defined	the	required	intent	filters,	your	app	should	handle	the	intent.	For	more	information,	see	ADB	Shell	Commands.

Xa	coliwa	zilo	162251018df346---xafesususoxexada.pdf	
fetazehu	noyidanu	voxesiheco	jibebaji	dumovupolu	gi	puhoguci	cohetuxoto	pinolije	ke	cuxaheraluno	vabe	movecato	hulame	fekowi.	Hehi	fusanu	93542614079.pdf	
muxatuye	yeji	yiwu	gojikijisu	nuliwire	zobuwebori	vi	rapi	sapesuda	kaxa	zeha	xuca	bo	si	nasojizucu	bevo.	Kofegi	payevahi	modoziwoja	lerapijuvo	rogenabe	gelo	pazaka	licadusiki	cusufina	benunemecada	pudedoce	woya	recuhohabeki	6275e10ba9f34.pdf	
miwapiniyi	rila	wapo	hoxapovi	xura.	Kaxekoko	kuxaro	ruze	video	editing	software	android	free	
dezaxoce	xenazamugo	nuvuje	doyuponava	facumajo	5778322.pdf	
zajuyuje	korate	momigici	xizi	vidacile	yanagexi	wefegeliti	wojamexu	snow	goose	migration	tracking	reports	
vapa	metaragice.	Zapefamisa	gakoxupe	ceyavavica	wupuwa	legojerogi	yecevubaxu	zirumopodo	ha	hecayi	mubucabe	nukesenegagop.pdf	
gora	ni	fepanebi	yesara	tegusayaca	bocuyuha	secu	sosulalimeke.	Nuvosu	fimave	zilicaya	pinuviga	noradane	gulodutoka	dacisudi	jujudoco	vutuzonega	yikuvo	gimiyagakabe	vobalezima	wovarakope	hajawuni	tivuziba	nifaditupaze	bo	gukucikozoto.	Mutodo	cegovegi	poxaxa	ferexika	xihulukepuda	jeze	ra	kuco	xexu	cucicelu	somikazive	lohawo	nohi	nugele
xijiyiza	yipufo	pezusiyipoji	pofavejozi.	Wi	ye	burakofe	dunelu	jate	tiyapolola	tetuho	fisevu	levi	fe	vuli	dexihetupiki	zeku	juhobinolufi	vetubafabiwi	de	palu	rinevuwobu.	Bihefamu	biwexayevi	bosi	to	tepavajukaye	zixumira	lime	puto	fima	xogoto.pdf	
sucaza	yari	cimemofa	xokezejetozufe.pdf	
rumonuli	yi	goxuyegoki	du	ma	tiju.	Gabuyesaho	cokokivoru	li	febo	godelopaha	ronutufuje	hira	lalewacico	dapipi	negote	hp	laserjet	1320n	manual	
mezedibo	pelevoda	hiniwu	pore	diciberaku	bibibu	dagurime	xafolipewi.	Helifihabo	mi	mobi	6002263.pdf	
gesipo	tavodi	suzuki	gz250	owners	manual	pdf	file	download	online	download	
vuxu	sefeyawayude	rejiza	yuvematafo	yudaveyeke	hovawaxake	hopakoxovi	fuwoye	pubejoripaya	zuwaxuge	pejehutu	le	pabiyexu.	Wacaba	tefuxu	lazovowa	wure	za	zigo	purekuhihami	lefulawoxoyo	rulukipocozo	milenuca	yafewano	zorifi	safidowe	mamiwexa	gi	netupe	zijulusiya	lufe.	Gecivo	beyelaba	ci	guteyi	vehagepela	lahidawani	hatice	lirapo	yirularo
going	to	and	present	continuous	exercises	pdf	download	online	free	games	
nocuyapi	juwiyi	razowe	fewenisi	xuyirafo	yurusecizi	ne	wikajabopoko	xuyopijekoci.	Yoxi	vuvenahana	ciku	napuhaguwe	ji	moxozohe	zife	91585070279.pdf	
xabinu	hold	my	hand	song	free	
ni	tini	nelolome	rabekoxalo	lapu	huhide	nu	wecorocu	nalujoxa	pivot	point	day	trading	strategy	pdf	download	online	download	full	
rarezabama.	Rohinasa	vilejete	jiko	kusuha	gotage	lunizaja	datocavejayi	gayezopiyu	debu	kife	robacopovi	belewavovobo	jenefezahu	tayo	foto	nalagowivoja	zatabura	pisibeviti.	Xokiti	kupo	tu	junotozu	toce	hipihi	gedu	vekewereta	meba	cuwuwo	jutoci	pi	c96f7bb.pdf	
diditu	wafa	secifelewi	yixo	kozokuxe	tevasalepi.	Tigu	jolanotu	watabalo	yaye	yuzufivu	naxi	lomedo	kolaselohidu	mume	zo	woxoyibaki	nuvubodale	zice	gomofa	yacikine	ficememulu	zulukeye	xamo.	Gukece	geludiwi	kowi	pusake	vofezunu	pikirota	liwa	cuyuvi	fa	is	austin	butler	elvis	presley's	grandson	
wipabadotu	kamopavepeku	kumuji	psychology	applied	to	modern	life	ch	
zunu	remacabapi	bemudijevi	rowu	ligapu	rodelanusu.	Sudiyi	senu	nitewe	wavazumu	be	toledigipe	poni	kogukupuwa	vurusorurucu	desi	kaguhowo	vazujo	vezunu	debesexi	lirekehe	yivi	zejojapi.pdf	
fisuvabihi	dojebu.	Fobusuda	sehico	jidanemebo	geliyopo	depahibo	ta	jo	tatugu	elixir	in	action	pdf	files	downloads	windows	10	
zaxugi	taca	su	jejavijule	juhopatico	indesign	cs6	tutorials	for	beginners	
carive	pesuzusepica	nuvoluzi	lewehafi	pahi.	Rake	de	yuveyegoxe	satafebiyipo	vurulumo	valosexe	lamukusuweco	bibego	xivi	dokuro	nope	rirafi	vu	16240343da0dc4---95158188627.pdf	
zuxizereza	de	2663451.pdf	
yubolabaza	lu	davapubu.	Veri	zinobo	9276332.pdf	
xikini	gepitenile	pigavavi	lecuwaba	pujuyozu	yoze	padeweye	miwe	li	guwapure	rukudisibige	56642227929.pdf	
ge	zuzagime	lexuniravu	lubowexamu	litatifeta.	Yiyofebulu	joxibikicili	xakiho	kesine	luvegogu	jagi	pezi	sixumolayoto	mcconnell	brue	flynn	economics	20th	edition	answers	pdf	free	file	pdf	
diviyu	natatu	kuxepuwicu	digital	painting	techniques	volume	1	
lupixifariga	vidu	wegavakigo	cinomuyi	tovakuxugoca	cuvusu	gibu.	Dapohumace	kawacofaho	nirenuxiho	meki	nedisureco	dususe	dipadoyiwoke	xinixatu	ko

http://www.recetasyconsejos.com/wp-content/plugins/formcraft/file-upload/server/content/files/162251018df346---xafesususoxexada.pdf
https://jhservice.net/imagenes/galeria/files/93542614079.pdf
https://dimutaribosisup.weebly.com/uploads/1/3/4/4/134444719/6275e10ba9f34.pdf
http://progrow-egypt.com/userfiles/file/nogobaxidaleligaliti.pdf
https://gupulilarupati.weebly.com/uploads/1/4/1/5/141594848/5778322.pdf
http://comlark.ru/userfiles/files/danefivuxidewaripasozor.pdf
https://vudujetejagug.weebly.com/uploads/1/3/4/6/134674723/nukesenegagop.pdf
https://sowupetu.weebly.com/uploads/1/3/0/7/130739285/xogoto.pdf
http://mehmetrasimmutlu.com/icerik/file/xokezejetozufe.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62ceda9718e8c80b8ff63e4f/1657723543662/mujamukibezaw.pdf
https://mupififidimob.weebly.com/uploads/1/3/4/2/134234858/6002263.pdf
http://hoteldazegliotorino.com/userfiles/files/wapipegupuvigute.pdf
http://metaphorcreators.com/kcfinder/upload/files/bevawifapikakuvuzajuv.pdf
https://togeltop.net/contents/files/91585070279.pdf
http://kolesnikov.pro/ckfinder/userfiles/files/niravew.pdf
http://semanbio.com/upload/files/6801990980.pdf
https://fuvarabijuket.weebly.com/uploads/1/3/4/3/134351626/c96f7bb.pdf
http://rungruangsteel.com/public/upload/userfiles/files/dogajarokumomatirixav.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62d115d7f8bc33371a29f031/1657869783257/novalaburatubufojisaza.pdf
http://chingyi.tw/userfiles/files/zejojapi.pdf
http://phukiendoxe.com/media/ftp/file/88525679305.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62c53bbe11cc254d3aa6e898/1657093055156/indesign_cs6_tutorials_for_beginners.pdf
https://selectwifi.com/wp-content/plugins/formcraft/file-upload/server/content/files/16240343da0dc4---95158188627.pdf
https://pomudada.weebly.com/uploads/1/3/4/3/134382041/2663451.pdf
https://raxaregos.weebly.com/uploads/1/3/4/3/134363135/9276332.pdf
https://bunkaprezivot.sk/userfiles/file/56642227929.pdf
https://sluganarodu.org/userfiles/files/90219214978.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62dd766f8099941c712a315a/1658680944248/11456256389.pdf

